Tag Archive for Oculus Rift

Mira Prism and Dreamworld AR – (What Disney Should Have Done?)

That Was Fast – Two “Bug-Eye” Headsets

A few days ago  I published a story on the Disney Lenovo Optics and wondered why they didn’t use a much simpler “bug-eye” combiner optics similar to the Meta-2 (below right) which currently sells in a development kit version for $949. It turns out the very same day Mira announced their Prism Headset which is a totally passive headset with a mount for a phone and bug-eye combiners with a “presale price” of $99 (proposed retail $150). Furthermore in looking into what Mira was doing, I discovered that back on May 9th, 2017, DreamWorld announced their “DreamGlass” headset using bug-eye combiners that also includes tracking electronics which is supposed to cost “under $350” (see the Appendix for a note on a lawsuit between DreamWorld and Meta)

The way both of these work (Mira’s is shown on the left) is that the cell phone produces two small images, one for each eye, that reflects off the two curved semi-mirror combiners that are joined together. The combiners reflect part of the phone’s the light and move the focus of the image out in space (because otherwise human could not focus so close).

Real or Not?: Yes Mira, Not Yet Dreamworld

Mira has definitely built production quality headsets as there are multiple reports of people trying them on and independent pictures of the headset which looks to be near to if not a finished product.

DreamWorld has not demonstrated, at least as of their May 9th announcement, have a fully functional prototype per Upload’s article. What may appear to be “pictures” of the headset are 3-D renderings. Quoting Upload:

“Dreamworld’s inaugural AR headset is being called the Dreamworld Glass. UploadVR recently had the chance to try it out at the company’s offices but we were not allowed to take photos, nor did representatives provide us with photographs of the unit for this story.

The Glass we demoed came in two form factors. The first was a smaller, lighter model that was used primarily to show off the headset’s large field of view and basic head tracking. The second was significantly larger and was outfitted with “over the counter” depth sensors and cameras to achieve basic positional tracking. “

The bottom line here is that Mira’s appear near ready to ship whereas DreamWorld still has a lot of work left to do and at this point is more of a concept than a product.

DreamWorlds “Shot Directly From DreamWorld’s AR Glass” videos were shot through a combiner, but it may or may not be through their production combiner configured with the phone in the same place as the production design.

I believe views shown in the Mira videos are real, but they are, of course, shooting separately the people in the videos wearing the heaset and what the image look’s like through the headset. I will get into one significant problem I found with Mira’s videos/design later (see “Mira Prism’s Mechanical Interference” section below).

DreamWorld Versus Mira Optical Comparison

While both DreamWorld and Mira have similar optical designs, on closer inspection it is clear that there is a very different angle between the cell phone display and the combiners (see left). DreamWorld has the combiner nearly perpendicular to the combiner whereas Mira has the cell phone display nearly parallel. This difference in angle means that there will be more inherent optical distortion in the DreamWorld design whereas the Mira design has the phone more in the way of the person’s vision, particularly if they wear glasses (once again, see “Mira Prism’s Mechanical Interference” section below).

See-Through Trade-offs of AR

Almost all see-though designs waste most light of the display in combining the image with the real world light.  Most designs lose 80% to 95% (sometimes more) of the display’s light. This in turn means you want to start with a display 20 to as much as 100 times (for outdoor use) the brightness of a cell phone. So even an “efficient” optical design has serious brightness problems starting with a cell phone display (sorry this is just a fact). There are some tricks to avoid these losses but not if you are starting with the light from a cell phone’s display (broad spectrum and very diffuse).

One thing I was very critical of last time of the Disney-Lenova headset was that it appeared to be blocking about 75 to 80% of the ambient/real-world light which is equivalent to dark sunglasses. I don’t think any reasonable person would find blocking this much light to be acceptable for something claiming to be “see-through” display.

From several pictures I have of Mira’s prototype, I very roughly calculated that they are about 70% transparent (light to medium dark sunglasses) which means they in turn are throwing away 70+% of the cell phone’s light. On of the images from from Mira’s videos is shown below. I have outlined with a dashed line the approximate active FOV (the picture cuts it off on the bottom) which Mira claims to cover about 60 degees and you can see the edge of the combiner lens (indicated by the arrows).

What is important to notice is that the images are somewhat faded and don’t not “dominate”/block-out the real world. This appears true of all the through optics images in Mira’s videos. The room while not dark is also not overly brightly lit. This is going to be a problem for any AR device using a cell phone as its display. With AR optics you are both going to throw away a lot of the displays light to support seeing through to the real world and you have to compete with the light that is in the real world. You could turn the room lights out and/or look at black walls and tables, but then what is the point of being “see through.”

I also captured a through the optics image from DreamWorld’s DreamGlass video (below). The first thing that jumps out at me is how dark the room looks and that they have a very dark table. So while the images may look more “solid” than in the Mira video, most of this is due to the lighting of the room

Because the DreamWorld background is darker, we can also see some of the optical issues with the design. In particular you should notice the “glow” around the various large objects (indicated by red arrows). There is also a bit of a double image of the word “home” (indicated by the green arrow). I don’t have an equivalent dark scene from Mira so I can’t tell if they have similar issues.

Mira Prism’s Resolution

Mira (only) supports the iPhone 6/6s/7 size display and not the larger “Plus” iPhones which won’t fit. This gives them 1334 by 750 pixels to start with. The horizontal resolution first has to be split in half and then about 20% of the center is used to separate the two images and center the left and right views with respect to the person’s eye (this roughly 20% gap can be seen in Mira’s Video). This nets about (1334/2) X 80% = ~534 pixels horizontally. Vertically they may have slightly higher resolution of about 600 pixels.

Mira claims a FOV of “60 Degrees” and generally when a company does not specify the whether it is horizontal, vertical, or diagonal, they mean diagonal because it is the bigger number. This would suggest that the horizontal FOV is about 40 and the vertical is about 45 degrees. This nets to a rather chunky 4.5 arcminutes/pixel (about the same as Oculus Rift CV1 but with a narrower FOV). The “screen door effect” of seeing the boundaries between pixels is evident in Mira’s videos and should be noticeable when wearing.

I’m not sure that supporting a bigger iPhone, as in the Plus size models would help. This design requires that the left and right images be centered over the which limits where the pixels in the display can be located. Additionally, a larger phone would cause more mechanical interference issues (such as with glasses covered in the next section).

Mira Prism’s Mechanical Interference

A big problem with a simple bug-eye combiner design is the location of the display device. For the best image quality you want the phone right in front of the eye and as parallel as possible to the combiners. You can’t see through the phone so they have to move it above the eye and tilt it from parallel. The more they move the phone up and tilt it, the more it will distort the image.

If you look at upper right (“A”) still frame form Mira’s video below  you will see that the phone his just slightly above the eyes. The bottom of the phone holder is touching the top of the person’s glasses (large arrow in frame A). The video suggest (see frames “B” and “C”) that the person is looking down at something in their hand. But as indicated by the red sight line I have drawn in frames A and B the person would have to be looking largely below the combiner and thus the image would at best be cut-off (and not look like the image in frame C).

In fact, for the person with glasses in the video to see the whole image they would have to be looking up as indicated by the blue sight lines in frames A and B above. The still frame “D” shows how a person would look through the headset when not wearing glasses.

I can’t say whether this would be a problem for all types of glasses and head-shapes, but it is certainly a problem that is demonstrated in the Mira’s own video.

Mira’s design maybe a bit too simple. I don’t see any adjustments other than the head band size. I don’t see any way work around say running into a person’s glasses as happens above.

Cost To Build Mira’s Prism

Mira’s design is very simple. The combiner technology is well known and can be sourced readily. Theoretically, Mira’s Prism should cost about the same to make as a number of so called “HUD” displays that use a cell phone as the display device and a (single) curved combiner that sell for between $20 and $50 (example on right). BTW, these “HUD” are useless in the daylight as a cell phone is just not bright enough. Mira needs to have a bit more complex combiner and hopefully of better quality than some of the so-called “HUDs” so $99 is not totally out of line, but they should be able to make them at a profit for $99.

Conclusions On Simple Bug-Eye Combiner Optics With A Phone

First let me say I have discussed Mira’s Prism more than DreamWord’s DreamGlass above because there is frankly more solid information on the Prism. DreamGlass seems to be more of a concept without tangible information.

The Mira headset is about as simple and inexpensive as one could make an AR see-through headset assuming you can use a person’s smartphone. It does the minimum enabling a person to focus on a phone that is so close and combining with the real world. Compared to say Disney-Lenovo birdbath, it is going to make both the display and real world both more than 2X brighter. As Mira’s videos demonstrate, the images are still going to be ghostly and not very solid unless the room and/or background is pretty dark.

Simplicity has its downsides. The resolution is  low, image is going to be a bit distorted (which can be corrected somewhat by software at the expense of some resolution). The current design appears to mechanical interference problems with wearing glasses. Its not clear if the design can be adapted to accommodate glasses as it would seem to move the whole optical design around and might necessitate a bigger headset and combiners.  Fundamentally a phone is not bright enough to support a good see-through display in even moderately lit environments.

I don’t mean to be overly critical of Mira’s Prism as I think it is an interesting low cost entry product, sort of the “Google Cardboard” of AR (It certainly makes more sense than the Disney_Lenovo headset that was just announced). I would think a lot of people would want to play around with the Mira Prism and find uses for it at the $99 price point. I would expect to see others copying its basic design. Still, the Mira Prism demonstrates many of the issues with making a low cost see-though design.

DreamWorld’s DreamGlass on the surface makes much less sense to me. It should have all the optical limitations of the much less expensive Mira Prism. It it adding at lot of cost on top of a very limited display foundation using a smartphones display.

Appendix

Some History of Bug-Eye Optics

It should be noted that what I refer to as bug-eye combiners optics is an old concept. Per the picture on the left taken from a 2005 Links/L3 paper, the concept goes back to at least 1988 using two CRTs as the displays. This paper includes a very interesting chart plotting the history of Link/L3 headsets (see below). Links legacy goes all the way back to airplane training simulators (famously used in World War II).

A major point of L3/Link’s later designs,  is that they used corrective optics between the display and the combiner to correct for the distortion cause by the off-axis relationship between the display and the combiner.

Meta and DreamWorld Lawsuit

The basic concept of dual large combiners in a headset obviously and old idea (see above), but apparently Meta thinks that DreamWorld may have borrowed without asking a bit too much from the Meta-2. As reported in TechCrunch, “The lawsuit alleges that Zhong [Meta’s former Senior Optical Engineer] “shamelessly leveraged” his time at the company to “misappropriate confidential and trade secret information relating to Meta’s technologies”.

Addendum

Holokit AR

Aryzon AR

There are at least two other contenders for the title of “Google Cardboard of AR.” Namely the Aryzon and Holokit which both separate the job of the combiner from the focusing. Both put a Fresnel lens in between the phone and a flat semitransparent combiner. These designs are one step simpler/cheaper (and use cardboard for the structure) than Mira’s design, but are more bulky with the phone hanging out. An advantage of these designs is that everything is “on-axis” which means lower distortion, but they have chromatic aberrations (color separation) issues with the inexpensive Fresnel lenses that the Mira’s mirror design won’t have. There also be some Fresnel lens artifact issues with these designs.

Varjo Foveated Display (Part 1)

Introduction

The startup Varjo recently announced and did a large number of interviews with the technical press about their Foveated Display (FD) Technology. I’m going to break this article into multiple parts, as currently planned, the first part will discuss the concept and the need for and part 2 will discuss how well I think it will work.

How It Is Suppose to Work

Varjo’s basic concept is relatively simple (see figure at left – click on it to pop it out). Varjo optically combines a OLED microdisplay with small pixels to give high angular resolution over a small area (what they call the “foveated display“), with a larger OLED display to give low angular resolution over a large area (what they call the “context display“). By eye tracking (not done in the current prototype), the foveated display is optically moved to be in the center of the person’s vision by tilting the beam splitter. Varjo says they have thought of and are patenting other ways of optically combining and moving the foveated image other than a beam splitter.

The beam splitter is likely just a partially silvered mirror. It could be 50/50 or some other ratio to match the brightness of the large and microdisplay OLED. This type of combining is very old and well understood. They likely will blend/fade-in the image in the rectangular boarder where the two display images meet.

The figure above is based on a sketch by Urho Konttori, CEO of Varjo in a video interview with Robert Scoble combined with pictures of the prototype in Ubergismo (see below), plus answers to some questions I posed to Varjo. It is roughly drawn to scale based on the available information. The only thing I am not sure about is the “microdisplay lens” which was shown but not described in the Scoble interview. This lens(es) may or may not be necessary based on the distance of the microdisplay from the beam combiner and could be used to help make the microdisplay pixels appear smaller or larger. If the optical path though the beam combiner to large OLED (in the prototype from an Oculus headset) would equal the path from to the microdisplay via reflecting off the combiner, then the microdisplay lens would not be necessary. Based on my scale drawing and looking at the prototype photographs it would be close to not needing the lens.

Varjo is likely using either an eMagin OLED microdisplay with a 9.3 micron pixel pitch or a Sony OLED microdisplay with a 8.7 micron pixel pitch. The Oculus headset OLED has ~55.7 micron pixel pitch. It does not look from the configuration like the microdisplay image will be magnified or shrunk significantly relative to the larger OLED. Making this assumption, the microdisplay image is about 55.7/9 = ~6.2 time smaller linearly or effectively ~38 times the pixels per unit area. This ~38 times the area means effectively 38 times the pixels over the large OLED alone.

The good thing about this configuration is that it is very simple and straightforward and is a classically simple way to combine two image, at least that is the way it looks. But the devil is often in the details, particularly in what the prototype is not doing.

Current Varjo Prototype Does Not Track the Eye

The Varjo “prototype” (picture at left from is from Ubergismo) is more of a concept demonstrator in that it does not demonstrate moving the high resolution image with eye tracking. The current unit is based on a modified Oculus headset (obvious from the picture, see red oval I added to the picture). They are using the two Oculus larger OLED displays the context (wide FOV) image and have added an OLED microdisplay per eye for the foveated display. In this prototype, they have a static beam splitter to combine the two images. In the prototype, the location of the high resolution part of the image is fixed/static and requires that the user look straight ahead to get the foveated effect. While eye tracking is well understood, it is not clear how successfully they can make the high resolution inset image track the eye and whether the a human will notice the boundary (I will save the rest of this discussion for part 2).

Foveated Displays Raison D’être

Near eye display resolution is improving at a very slow rate and is unlikely to dramatically improve. People quoting “Moore’s Law” applying to display devices are simply either dishonest or don’t understand the problems. Microdisplays (on I.C.s) are already being limited by the physics of diffraction as their pixels (or color sub-pixels) get withing 5 times the wavelengths of visible light. The cost of making microdisplays bigger to support more pixels drives the cost up dramatically and this not rapidly improving; thus high resolution microdisplays are still and will remain very expensive.

Direct view display technologies while they have become very good at making large high resolution display, they can’t be make small enough for lightweight head-mounted displays with high angular resolution. As I discussed the Gap in Pixel Sizes (and for reference, I have included the chart from that article) which I published before I heard of Varjo, microdisplays enable high angular resolution but small FOV while adapted direct view display support low angular resolution with a wide FOV. I was already planning on explaining why Foveated Displays are the only way in the foreseeable future to support high angular resolution with a wide FOV: So from my perspective, Varjo’s announcement was timely.

Foveated Displays In Theory Should Work

It is well known that the human eye’s resolution falls off considerably from the high resolution fovea/center vision to the peripheral vision (see the typical graph at right). I should caution, that this is for a still image and that the human visual system is not this simple; in particular it has sensitivity to motion that this graph can’t capture.

It has been well proven by many research groups that if you can track the eye and provide variable resolution the eye cannot tell the difference from a high resolution display (a search for “Foveated” will turn up many references and videos). The primary use today is with Foveated Rendering to greatly reduce the computational requirements of VR environment.

Varjo is trying to exploit the same foveated effect to gives effectively very high resolution from two (per eye) much lower resolution displays. In theory, it could work but will in in practice?  In fact, the idea of a “Foveated Display” is not new. Magic Leap discussed it in their patents with a fiber scanning display. Personally, the idea seems to come up a lot in “casual discussions” on the limits of display resolution. The key question becomes: Is Varjo’s approach going to be practical and will it work well?

Obvious Issues With Varjo’s Foveated Display

The main lens (nearest the eye) is designed to bring the large OLED in focus like most of today’s VR headsets. And the first obvious issues is that the lens in a typical VR headset is designed resolve pixels that are more than 6 times smaller. Typical VR headsets lenses are, well . . ., cheap crap with horrible image quality. To some degree, they are deliberately blurring/bad to try and hide the screen door effect of the highly magnified large display. But the Varjo headset would need vastly better, and much more expensive, and likely larger and heavier optics for the foveated display; for example instead of using a simple cheap plastic lens, they may need a multiple element (multiple lenses) and perhaps made of glass.

The next issue is that of the tilting combiner and the way it moves the image. For simple up down movement of the foveated display’s image will follow a simple path up/down path, but if the 45 degree angle mirror tilts side to side the center of the image will follow an elliptical path and rotate making it more difficult to align with the context image.

I would also be very concerned about the focus of the image as the mirror tilts through of the range as the path lengths from the microdisplay to the main optics changes both to the center (which might be fixable by complex movement of the beam splitter) and the corners (which may be much more difficult to solve).

Then there is the general issue of will the user be able to detect the blend point between the foveated and context displays. They have to map the rotated foveated image match the context display which will loose (per Nyquist re-sampling) about 1/2 the resolution of the foveated image. While they will likely try cross-fade between the foveated and context display, I am concerned (to be addressed in more detail in part 2) that the visible/human detectable particularly when things move (the eye is very sensitive to movement).

What About Vergence/Accommodation (VAC)?

The optical configuration of Varjo’s Foveated Display is somewhat similar to that of Oculus’s VAC display. Both leverage a beam splitter, but then how would you do VAC with a Foveated Display?

In my opinion, solving the resolution with wide field of view is a more important/fundamentally necessary problem to solve that VAC at the moment. It is not that VAC is not a real issue, but if you don’t have resolution with wide FOV, then VAC is not really necessary?

At the same time, this points out how far away headsets that “solve all the world’s problems” are from production. If you believe that high resolution with a wide field of view that also address VAC, you may be in for a many decades wait.

Does Varjo Have a Practical Foveated Display Solution?

So the problem with display resolution/FOV growth is real and in theory a foveated display could address this issue. But has Varjo solved it? At this point, I am not convinced, and I will try and work though some numbers and more detail reasoning in part 2.

ODG R-9 (Horizon): 1080p Per Eye, Yes Really

Lazy Reporting – The Marketing Hyperbole’s Friend

While I have not ODG’s R-9 in person yet, I fully expect that it will look a lot better than Microsoft’s Hololens. I even think it will look better in terms of image quality than what I think ML is working on. But that is not the key point of this article.

But there is also a layer of marketing hyperbole and misreporting going on that I wanted to clear up. I’m just playing referee hear and calling it like a see them.

ODG 4K “Experience” with 2K (1080p) Per Eye


2016-12-28 Update – It appears I was a bit behind on the marketing hype vernacular being used in VR. Most VR displays today, such as Oculus, take a single flat panel and split it between two eyes. So each eye sees less than half (some pixels are cut off) of the pixels. Since bigger is better in marketing, VR makers like to quote the whole flat panel size and not the resolution per eye. 

ODG “marketing problem” is that historically a person working with near eye displays would talk in in terms of “resolution per eye” but this would not be as big by 2X as the flat panel based VR companies market. Rather than being at a marketing hype disadvantage, ODG apparently has adopted the VR flat panel vernacular, however misleading it might be. 


I have not met Jame Mackie nor have I watched a lot of his videos, but he obviously does not understand display technology well and I would take anything he says about video quality with a grain of salt. If should have understood that ODG’s R-9 has is not “4K” as in the title of his YouTube video: ODG 4K Augmented Reality Review, better than HoloLens ?. And specifically he should of asked questions when the ODG employee stated at about 2:22, “it’s two 1080p displays to each eye, so it is offering a 4K experience.

What the ODG marketing person was I think trying to say was that somehow having 1080p (also known as 2K) for each eye was like having a 2 times 2K or “4K equivalent” it is not. In stumbling to try and make the “4K equivalent” statement, the ODG person simply tripped over his own tongue to and said that there were two 1080p devices per eye, when he meant to say there were two 1080p devices in the glasses (one per eye). Unfortunately Jame Mackie didn’t know the difference and did not realize that this would have been impossible in the R-9’s form factor and didn’t follow up with a question. So the  false information got copied into the title of the video and was left as if it was true.

VRMA’s Micah Blumberg Asks The Right Questions and Get The Right Answer – 1080p Per Eye

This can be cleared up in the following video interview with Nima Shams, ODG’s VP of Headworn: “Project Horizon” AR VR Headset by VRMA Virtual Reality Media“. When asked by Micah Blumberg starting at about 3:50 into the video, “So this is the 4K headset” to which Nima Sham responds, “so it is 1080p to each eye” to which Blumberg astutely makes sure to clarify with, “so we’re seeing 1080p right now and not 4K” to which Nima Sham responds, “okay, yeah, you are seeing 2K to each eye independently“.  And they even added an overlay in the video “confirmed 2K per eye.” (see inside the read circle I added).

A Single 1080p OLED Microdisplay Per Eye

Even with “only” 1080p OLED microdisplay per eye with a simple optical path the ODG R-9 should have superior image quality compared to Hololens:

  1. OLEDs should give better contrast than Hololens’ Himax LCOS device
  2. There will be no field sequential color breakup with head or image movment as there can be with Hololens
  3. They have about the same pixels per arc-minute at Hololens but with more pixels they increase FOV from about 37 degrees to about 50 degrees.
  4. Using a simple plate combiner rather than the torturous path of Hololens’ waveguide, I would expect the pixels to be sharper and with little visible chroma aberrations and no “waveguide glow” (out of focus light around bright objects). So even though the angular resolution of the two is roughly the same, I would expect the R-9 to look sharper/higher resolution.

The known downsides compared to Hololens:

  1. The ODG R-9 does not appear to have enough “eye relief” to support wearing glasses.
  2. The device puts a lot of weight on the nose and ears of the user.

I’m not clear about the level of tracking but ODG’s R-9 does not appear to have the number of cameras and sensors that Hololens has for mapping/locking the real world. We will have to wait and see for more testing on this issue. I also don’t have information on how comparable the level of image and other processing is done by the ODG relative to Horizon.

Conclusion

Micah Blumberg showed the difference between just repeating what he is told and knowing enough to ask the right followup question. He knew that ODG had a 4K marketing message was confusing and that what he was being told was at odds with what he was being told so he made sure to clarify it. Unfortunately while James Makie got the “scoop” on the R-9 being the product name for Horizon, he totally misreported the resolution and other things in his report (more on that later).

Lazy and ill informed reporters are the friend and amplifier of marketing hyperbole. It appears that ODG is trying to equate dual 1080p displays per eye with being something like “4K” which is really is not. You need 1080p (also known as 2K) per eye to do stereo 1080p, but that is not the same as “4K” which which is defined as 3840×2060 resolution or 4 times the spatial resolution of 1080p. Beyond this, qualifiers of like “4K “Experience” which has no real meaning are easily dropped and ill informed reporters will report it as “4K” which does have a real meaning.

Also, my point is not meant to pick on ODG, they just happen to be the case at hand. Unfortunately, most of the display market is “liars poker.” Companies are fudging on display specs all the time. I rarely see a projector that meets or exceeds it “spec” lumens. Resolutions are often spec’ed in misleading ways (such as specifying the input rather than the “native” resolution). Contrast is another place were “creative marketing” is heavily used. The problem is that because “everyone is doing it” people feel they have to just to keep up.

The problem for me comes when I have to deal with people that have read false or misleading information. It gets hard to separate truth from marketing exaggeration.

This also goes back to why I didn’t put much stock in the magazine reports about Magic Leap looked. These reports were made by people that were easy to impress and likely not knowledgeable about display devices. They probably could not tell the display resolution by 2X in each direction or would notice even moderately severe image problems. If they were shown a flashy looking demo they would assume it was high resolution.

One More Thing – Misleading/Fake “True Video”

It will take a while to explain (maybe next time), I believe the James Makie video also falsely indicates at 2:29 in the video (the part with the cars and the metal balls on the table), that what is being shown is how the ODG R-9 works.

In fact, while the images of the cars and balls are generated by the R-9, there tracking of the real world and the reflections off the surfaces are a well orchestrated FAKE. Basically they were playing a pre-rendered video though the glasses (so that part is likely real). But clear and black boxes on the table where props there to “sell the viewer” that this was being rendered on the fly.  There also appears to be some post-processing in the video. Most notably, it looks like the black box was modified in post production. There are several clues in the video that will take a while to explain.

To be fair to ODG, the video does not claim to not be fake/processed, but the way it is presented within Jame Makie’s video is extremely misleading to say the least. It could be that the video was taken out of context.

For the record, I do believe the video starting at 4:02 which I have analyze before is a genuine through the optics video and is correctly so identified on the video. I’m not sure about the “tape replacement” video at 3:23, I think it may be genuine or it could be some cleaver orchestrating.

Kopin Entering OLED Microdisplay Market

Kopin Making OLED Microdisplays

Kopin announced today that they are getting into the OLED Microdisplay business. This is particularly notable because Kopin has been a long time (since 1999) manufacture of transmissive LCD microdisplays used in camera viewfinders and near eye display devices. They also bought Forth Dimension Displays back in 2011, a maker of high resolution ferroelectric reflective LCOS used in higher end near eye products.

OLED Microdisplays Trending in AR/VR Market

With the rare exception of the large and bulky Meta 2, microdisplays, (LCOS, DLP, OLED, and transmissive LCD), dominate the AR/MR see-through market. They also are a significant factor in VR and other non-see-through near eye displays

Kopins entry seems to be part of what may be a trend toward OLED Microdisplays used in near eye products. ODG’s next generation “Horizon” AR glasses is switching from LCOS (used in the current R7) to OLED microdisplays. Epson which was a direct competitor to Kopin in transmissive LCD, switched to OLED microdisplays in their new Moverio BT-300 AR glasses announced back in February.

OLED Microdisplays Could Make VR and Non-See-Through Headsets Smaller/Lighter

Today most of the VR headsets are following Oculus’s use of large flat panels with simple optics. This leads to large bulky headsets, but the cost of OLED and LCD flat panels is so low compared to other microdisplays with their optics that they win out. OLED microdisplays have been far too expensive to compete on price with the larger flat panels, but this could change as there are more entrants into the OLED microdisplay market.

OLEDs Don’t Work With Waveguides As Used By Hololens and Magic Leap

It should be noted that the broad spectrum and diffuse light emitted by OLED is generally incompatible with the flat waveguide optics such as used by Hololens and is expected from Magic Leap (ML). So don’t expect to see these being used by Hololens and ML anytime soon unless they radically redesign their optics. Illuminated microdisplays like DLP and LCOS can be illuminated by narrower spectrum light sources such as LED and even lasers and the light can be highly collimated by the illumination optics.

Transmissive LCD Microdisplays Can’t Compete As Resolution Increases

If anything, this announcement from Kopin is the last nail in the coffin of the transmissive LCD microdisplay in the future. OLED Microdisplays have the advantages over transmissive Micro-LCD in the ability to go to higher resolution and smaller pixels to keep the overall display size down for a given resolution when compared to transmissive LCD. OLEDs consume less power for the same brightness than transmissive LCD. OLED also have much better contrast. As resolution increases transmissive LCDs cannot compete.

OLEDs Microdisplays More Of A Mixed Set of Pros and Cons Compared to LCOS and DLP.

There is a mix of pro’s and con’s when comparing OLED microdisplays with LCOS and DLP. The Pro’s for OLED over LCOS and DLP include:

  1. Significantly simpler optical path (illumination path not in the way). Enables optical solutions not possible with reflective microdisplays
  2. Lower power for a given brightness
  3. Separate RGB subpixels so there is no field sequential color breakup
  4. Higher contrast.

The advantages for LCOS and DLP reflective technologies over OLED microdisplays include:

  1. Smaller pixel equals a smaller display for a given resoluion. DLP and LCOS pixels are typically from 2 to 10 times smaller in area per pixel.
  2. Ability to use narrow band light sources which enable the use of waveguides (flat optical combiners).
  3. Higher brightness
  4. Longer lifetime
  5. Lower cost even including the extra optics and illumination

Up until recently, the cost of OLED microdisplays were so high that only defense contractors and other applications that could afford the high cost could consider them. But that seems to be changing. Also historically the brightness and lifetimes of OLED microdisplays were limited. But companies are making progress.

OLED Microdisplay Competition

Kopin is long from being the first and certainly is not the biggest entry in the OLED microdisplay market. But Kopin does have a history of selling volume into the microdisplay market. The list of known competitors includes:

  1. Sony appears to be the biggest player. They have been building OLED microdisplays for many years for use in camera viewfinders. They are starting to bring higher resolution products to the market and bring the costs down.
  2. eMagin is a 23-year-old “startup”. They have a lot of base technology and are a “pure play” stock wise. But they have failed to break through and are in danger of being outrun by big companies
  3. MicoOLED – Small France startup – not sure where they really stand.
  4. Samsung – nothing announced but they have all the technology necessary to make them. Update: Ron Mertens of OLED-Info.com informed me that I was rumored that the second generation of Google Glass was considering a Samsung OLED microdisplay and that Samsung had presented a paper going back to 2011.
  5.  LG – nothing announced but they have all the technology necessary to make them.

I included Samsung and LG above not because I have seen or heard of them working on them, but I would be amazed if they didn’t at least have a significant R&D effort given their sets of expertise and their extreme interest in this market.

For More Information:

For more complete information on the OLED microdisplay market, you might want go to OLED-info that has been following both large flat panel and small OLED microdisplay devices for many years. They also have two reports available, OLED Microdisplays Market Report and OLED for VR and AR Market Report.

For those who want to know more about Kopin’s manufacturing plan, Chris Chinnock of Insight Media has an interesting article outlining Kopin’s fabless development strategy.

Near Eye AR/VR and HUD Metrics For Resolution, FOV, Brightness, and Eyebox/Pupil

Image result for oculus riftI’m planning on following up on my earlier articles about AR/VR Head Mounted Displays
(HMD) that also relate to Heads Up Displays (HUD) with some more articles, but first I would like to get some basic Image result for hololenstechnical concepts out of the way.  It turns out that the metrics we care about for projectors while related don’t work for hud-renaultmeasuring HMD’s and HUDs.

I’m going to try and give some “working man’s” definitions rather than precise technical definitions.  I be giving a few some real world examples and calculations to show you some of the challenges.

Pixels versus Angular Resolution

Pixels are pretty well understood, at least with today’s displays that have physical pixels like LCDs, OLEDs, DLP, and LCOS.  Scanning displays like CRTs and laser beam scanning, generally have additional resolution losses due to imperfections in the scanning process and as my other articles have pointed out they have much lower resolution than the physical pixel devices.

When we get to HUDs and HMDs, we really want to consider the angular resolution, typically measured in “arc-minutes” which are 1/60th of a degree; simply put this is the angular size that a pixel covers from the viewing position. Consumers in general haven’t understood arc-minutes, and so many companies have in the past talked in terms of a certain size and resolution display viewed from a given distance; for example a 60-inch diagonal 1080P viewed at 6 feet, but since the size of the display, resolution and viewing distance are all variables its is hard to compare displays or what this even means with a near eye device.

A common “standard” for good resolution is 300 pixels per inch viewed at 12-inches (considered reading distance) which translates to about one-arc-minute per pixel.  People with very good vision can actually distinguish about twice this resolution or down to about 1/2 an arc-minute in their central vision, but for most purposes one-arc-minute is a reasonable goal.

One thing nice about the one-arc-minute per pixel goal is that the math is very simple.  Simply multiply the degrees in the FOV horizontally (or vertically) by 60 and you have the number of pixels required to meet the goal.  If you stray much below the goal, then you are into 1970’s era “chunky pixels”.

Field of View (FOV) and Resolution – Why 9,000 by 8100 pixels per eye are needed for a 150 degree horizontal FOV. 

As you probably know, the human eye’s retina has variable resolution.  The human eyes has roughly elliptical FOV of about 150 to 170 degrees horizontally by 135 to 150 degrees vertically, but the generally good discriminating FOV is only about 40 degree (+/-20 degrees) wide, with reasonably sharp vision, the macular, being about 17-20 degrees and the fovea with the very best resolution covers only about 3 degrees of the eye’s visual field.   The eye/brain processing is very complex, however, and the eye moves to aim the higher resolving part of the retina at a subject of interest; one would want the something on the order of the one-arc-minute goal in the central part of the display (and since having a variable resolution display would be a very complex matter, it end up being the goal for the whole display).

And going back to our 60″, 1080p display viewed from 6 feet, the pixel size in this example is ~1.16 arc-minutes and the horizontal field of view of view will be about 37 degrees or just about covering the generally good resolution part of the eye’s retina.

Image result for oculus rift

Image from Extreme Tech

Now lets consider the latest Oculus Rift VR display.  It spec’s 1200 x 1080 pixels with about a 94 horz. by 93 vertical FOV per eye or a very chunky ~4.7 arc-minutes per pixel; in terms of angular resolution is roughly like looking at a iPhone 6 or 7 from 5 feet away (or conversely like your iPhone pixels are 5X as big).   To get to the 1 arc-minute per pixel goal of say viewing today’s iPhones at reading distance (say you want to virtually simulate your iPhone), they would need a 5,640 by 5,580 display or a single OLED display with about 12,000 by 7,000 pixels (allowing for a gap between the eyes the optics)!!!  If they wanted to cover the 150 by 135 FOV, we are then talking 9,000 by 8,100 per eye or about a 20,000 by 9000 flat panel requirement.

Not as apparent but equally important is that the optical quality to support these types of resolutions would be if possible exceeding expensive.   You need extremely high precision optics to bring the image in focus from such short range.   You can forget about the lower cost and weight Fresnel optics (and issues with “God rays”) used in Oculus Rift.

We are into what I call “silly number territory” that will not be affordable for well beyond 10 years.  There are even questions if any know technology could achieve these resolutions in a size that could fit on a person’s head as there are a number of physical limits to the pixel size.

People in gaming are apparently living with this appallingly low (1970’s era TV game) angular resolution for games and videos (although the God rays can be very annoying based on the content), but clearly it not a replacement for a good high resolution display.

Now lets consider Microsoft’s Hololens, it most criticized issue is is smaller (relative to the VR headsets such as Oculus) FOV of about 30 by 17.5 degrees.  It has a 1268 by 720 pixel display per eye which translates into about 1.41 arc-minutes per pixel which while not horrible is short of the goal above.   If they had used 1920×1080 (full HD) microdisplay devices which are becoming available,  then they would have been very near the 1 arc-minute goal at this FOV.

Let’s understand here that it is not as simple as changing out the display, they will also have to upgrade the “light guide” that the use as an combiner to support the higher resolution.   Still this is all reasonably possible within the next few years.   Microsoft might even choose to grow the FOV to around 40 degrees horizontally rather and keep the lower angular resolution a 1080p display.  Most people will not seriously notice the 1.4X angular resolution different (but they will by about 2x).

Commentary on FOV

I know people want everything, but I really don’t understand the criticism of the FOV of Hololens.  What we can see here is a bit of “choose your poison.”  With existing affordable (or even not so affordable) technology you can’t support a wide field of view while simultaneously good angular resolution, it is simply not realistice.   One can imaging optics that would let you zoom between a wide FOV with lower angular resolution and a smaller FOV with higher angular resolution.  The control of this zooming function could perhaps be controlled by the content or feedback from the user’s eyes and/or brain activity.

Lumens versus Candelas/Meter2 (cd/m2 or nits)

With an HMD or HUD, what we care about is the light that reaches the eye.   In a typical front projector system, only an extremely small percentage of the light that goes out of the projector, reflects off the screen and makes it back to any person’s eye, the vast majority of the light goes to illuminating the room.   With a HMD or HUD all we care about is the light that makes it into the eye.

Projector lumens or luminous flux, simply put, are a measure of the total light output and for a projector is usually measure when outputting a solid white image.   To get the light that makes it to the eye we have to account for the light hits a screen, and then absorbed, scattered, and reflects back at an angle that will get back to the eye.  Only an exceeding small percentage (a small fraction of 1%) of the projected light will make it into the eye in a typical front projector setup.

With HMDs and HUDs we talk about brightness in terms candelas-per-Meter-Squared (cd/m2), also referred to as “nits” (while considered an obsolete term, it is still often used because it is easier to write and say).  Cd/m2 (or luminance) is measure of brightness in a given direction which tells us how bright the light appears to the eye looking in a particular direction.   For a good quick explanation of lumens, cd/m2 I would recommend a Compuphase article.

Image result for hololens

Hololens appears to be “luminosity challenged” (lacking in  cd/m2) and have resorted to putting sunglasses on outer shield even for indoor use.  The light blocking shield is clearly a crutch to make up for a lack of brightness in the display.   Even with the shield, it can’t compete with bright light outdoors which is 10 to 50 times brighter than a well lit indoor room.

This of course is not an issue for the VR headsets typified by Oculus Rift.  They totally block the outside light, but it is a serious issue for AR type headsets, people don’t normally wear sunglasses indoors.

Now lets consider a HUD display.  A common automotive spec for a HUD in sunlight is to have 15,000 cd/m2 whereas a typical smartphone is between 500 and 600 cd/m2 our about 1/30th the luminosity of what is needed.  When you are driving a car down the road, you may be driving in the direction of the sun so you need a very bright display in order to see it.

The way HUDs work, you have a “combiner” (which may be the car’s windshield) that combines the image being generated with the light from the real world.  A combiner typical only reflects about 20% to 30% of the light which means that the display before the combiner needs to have on the order of 30,000 to 50,000 cd/m2 to support the 15,000 cd/m2 as seen in the combiner.  When you consider that you smartphone or computer monitor only has about 400 to 600 cd/m2 , it gives you some idea of the optical tricks that must be played to get a display image that is bright enough.

phone-hudYou will see many “smartphone HUDs” that simply have a holder for a smarphone and combiner (semi-mirror) such as the one pictured at right on Amazon or on crowdfunding sites, but rest assured they will NOT work in bright sunlight and only marginal in typical daylight conditions. Even with combiners that block more than 50% of the daylight (not really much of a see-through display at this point) they don’t work in daylight.   There is a reason why companies are making purpose built HUDs.

The cd/m2 also is a big issue for outdoor head mount display use. Depending on the application, they may need 10,000 cd/m2 or more and this can become very challenging with some types of displays and keeping within the power and cooling budgets.

At the other extreme at night or dark indoors you might want the display to have less than 100 cd/m2 to avoid blinding the user to their surrounding.  Note the SMPTE spec for movie theaters is only about 50 cd/mso even at 100 cd/m2 you would be about 2X the brightness of a movie theater.  If the device much go from bright sunlight to night use, you could be talking over a 1,500 to 1 dynamic range which turns out to be a non-trivial challenge to do well with today’s LEDs or Lasers.

Eye-Box and Exit Pupil

Since AR HMDs and HUDs generate images for a user’s eye in a particular place, yet need to compete with the ambient light, the optical system is designed to concentrate light in the direction of the eye.  As a consequence, the image will only be visible in a given solid angle “eye-box” (with HUDs) or “pupil” (with near eye displays).   There is also a trade-off in making the eyebox or pupil bigger and the ease of use, as the bigger the eye-box or pupil, the easier it will be the use.

With HUD systems there can be a pretty simple trade-off in eye-box size and cd/m2 and the lumens that must be generated.   Using some optical tricks can help keep from needing an extremely bright and power hungry light source.   Conceptually a HUD is in some ways like a head mounted display but with very long eye relief. With such large eye relieve and the ability of the person to move their whole head, the eyebox for a HUD has significantly larger than the exit pupil of near eye optics.  Because the eyebox is so much larger a HUD is going to need much more light to work with.

For near eye optical design, getting a large exit pupil is a more complex issue as it comes with trade-offs in cost, brightness, optical complexity, size, weight, and eye-relief (how far the optics are from the viewer’s eye).

Too small a pupil and/or with more eye-relief, and a near eye device is difficult to use as any small movement of the device causes you to to not be able to see the whole image.  Most people’s first encounter with an exit pupil is with binoculars or a telescope and how the image cuts offs unless the optics are centered well on the user’s eye.

Conclusions

While I can see that people are excited about the possibilities of AR and VR technologies, I still have a hard time seeing how the numbers add up so to speak for having what I would consider to be a mass market product.  I see people being critical of Hololens’ lower FOV without being realistic about how they could go higher without drastically sacrificing angular resolution.

Clearly there can be product niches where the device could serve, but I think people have unrealistic expectations for how fast the field of view can grow for product like Hololens.   For “real work” I think the lower field of view and high angular resolution approach (as with Hololens) makes more sense for more applications.   Maybe game players in the VR space are more willing to accept 1970’s type angular resolution, but I wonder for how long.

I don’t see any technology that will be practical in high volume (or even very expensive at low volume) that is going to simultaneously solve the angular resolution and FOV that some people want. AR displays are often brightness challenged, particularly for outdoor use.  Layered on top of these issues are those size, weight, cost, and power consumption which we will have to save these issues for another day.