Tag Archive for Displays

Avegant “Light Field” Display – Magic Leap at 1/100th the Investment?

Surprised at CES 2017 – Avegant Focus Planes (“Light Field”)

While at CES 2017 I was invited to Avegant’s Suite and was expecting to see a new and improved and/or a lower cost version of the Avegant Glyph. The Glyph  was a hardly revolutionary; it is a DLP display based, non-see-through near eye display built into a set of headphones with reasonably good image quality. Based on what I was expecting, it seemed like a bit much to be signing an NDA just to see what they were doing next.

But what Avegant showed was essentially what Magic Leap (ML) has been claiming to do in terms of focus planes/”light-fields” with vergence & accommodation.  But Avegant had accomplished this with likely less than 1/100th the amount of money ML is reported to have raised (ML has raised to date about $1.4 billion). In one stroke they made ML more believable and at the same time raises the question why ML needed so much money.

What I saw – Technology Demonstrator

I was shown was a headset with two HDMI cables for video and USB cable for power and sensor data going to an external desktop computer all bundle together. A big plus for me was that there enough eye relief that I could wear my own glasses (I have severe astigmatism so just diopter adjustments don’t work for me). The picture at left is the same or similar prototype I wore. The headset was a bit bulkier than say Hololens, plus the bundle of cables coming out of it. Avegant made it clear that this was an engineering prototype and nowhere near a finished product.

The mixed reality/see-through headset merges the virtual world with the see-through real world. I was shown three (3) mixed reality (MR) demos, a moving Solar System complete with asteroids, a Fish Tank complete with fish swimming around objects in the room and a robot/avatar woman.

Avegant makes the point that the content was easily ported from Unity into their system with fish tank video model coming from the Monterrey Bay Aquarium and the woman and solar system being downloaded from the Unity community open source library.  The 3-D images were locked to the “real world” taking this from simple AR into be MR. The tracking was not all perfect, nor did I care, the point of the demo was the focal planes, lots of companies are working on tracking.

It is easy to believe that by “turning the crank” they can eliminate the bulky cables and  the tracking and locking to between the virtual and real world will improve. It was a technology capability demonstrator and on that basis it has succeeded.

What Made It Special – Multiple Focal Planes / “Light Fields”

What ups the game from say Hololens and takes it into the realm of Magic Leap is that it supported simultaneous focal planes, what Avegant call’s “Light Fields” (a bit different than true “light fields” to as I see it). The user could change what they were focusing in the depth of the image and bring things that were close or far into focus. In other words, they simultaneously present to the eye multiple focuses. You could also by shifting your eyes see behind objects a bit. This clearly is something optically well beyond Hololens which does simple stereoscopic 3-D and in no way presents multiple focus points to the eye at the same time.

In short, what I was seeing in terms of vergence and accommodation was everything Magic Leap has been claiming to do. But Avegant has clearly spent only very small fraction of the development cost and it was at least portable enough they had it set up in a hotel room and with optics that look to be economical to make.

Now it was not perfect nor was Avegant claiming it to be at this stage. I could see some artifacts, in particularly lots of what looked like faint diagonal lines. I’m not sure if these were a result of the multiple focal planes or some other issue such as a bug.

Unfortunately the only available “through the lens” video currently available is at about 1:01 in Avegant’s Introducing Avegant Light Field” Vimeo video. There are only a few seconds and it really does not demonstrate the focusing effects well.

Why Show Me?

So why were they more they were showing it to me, an engineer and known to be skeptical of demos? They knew of my blog and why I was invited to see the demo. Avegant was in some ways surprising open about what they were doing and answered most, but not all, of my technical questions. They appeared to be making an effort to make sure people understand it really works. It seems clear they wanted someone who would understand what they had done and could verify it it some something different.

What They Are Doing With the Display

While Avegant calls their technology “Light Fields” it is implemented with (directly quoting them) “a number of fixed digital focal planes, and then interpolate the planes in-between them.” Multiple focus planes have many of the same characteristics at classical light fields, but require much less image data be simultaneously presented to the eye and thus saving power on generating and displaying as much image data, much of which the eye will not “see”/use.

They are currently using a 720p DLP per eye for the display engine but they said they thought they could support other display technologies in the future. As per my discussion on Magic Leap from November 2016, DLP has a high enough field rate that they could support displaying multiple images with the focus changing between images if you can change the focus fast enough. If you are willing to play with (reduce) color depth, DLP could support a number of focus planes. Avegant would not confirm if they use time sequential focus planes, but I think it likely.

They are using “birdbath optics” per my prior article with a beam splitter and spherical semi-mirror /combiner (see picture at left). With a DLP illuminated by LEDs, they can afford the higher light losses of the birdbath design and support having a reasonable amount of transparency to the the real world. Note, waveguides also tend to lose/wast a large amount of light as well. Avegant said that the current system was 50% transparent to the real world but that the could make it more (by wasting more light).

Very importantly, a birdbath optical design can be very cheap (on the order of only a few dollars) whereas the waveguides can cost many tens of dollars (reportedly Hololen’s waveguides cost over $100 each). The birdbath optics also can support a very wide field of view (FOV), something generally very difficult/expensive to support with waveguides. The optical quality of a birdbath is generally much better than the best waveguides. The downside of the birdbath compared to waveguides that it is bulkier and does not look as much like ordinary glasses.

What they would not say – Exactly How It Works

The one key thing they would not say is how they are supporting the change in focus between focal planes. The obvious way to do it would with some kind of electromechanical device such as moving focus or a liquid filled lens (the obvious suspects). In a recent interview, they repeatedly said that there were no moving parts and that is was “economical to make.”

What They are NOT Doing (exactly) – Mechanical Focus and Eye/Pupil Tracking

After meeting with Avegant at CES I decided to check out their recent patent activity and found US 2016/0295202 (‘202). It show a birdbath optics system (but with a non-see through curved mirror). This configuration with a semi-mirror curved element would seem to do what I saw. In fact, it is very similar to what Magic Leap showed in their US application 2015/0346495.

Avegant’s ‘202 application uses a combination of a “tuning assembly 700” (some form of electro-mechanical focus).

It also uses eye tracking 500 to know where the pupil is aimed. Knowing where the pupil is aimed would, at least in theory, allow them to generate a focus plane for the where the eye is looking and then an out of focus plane for everything else. At least in theory that is how it would work, but this might be problematical (no fear, this is not what they are doing, remember).

I specifically asked Avegant about the ‘202 application and they said categorically that they were not using it and that the applications related to what they were using has not yet been published (I suspect it will be published soon, perhaps part of the reason they are announcing now). They categorically stated that there were “no moving parts” and that the “did not eye track” for the focal planes. They stated that the focusing effect would even work with say a camera (rather than an eye) and was in no way dependent on pupil tracking.

A lesson here is that even small companies file patents on concepts that they don’t use. But still this application gives insight into what Avegant was interested in doing and some clues has to how the might be doing it. Eliminate the eye tracking and substitute a non-mechanical focus mechanism that is rapid enough to support 3 to 6 focus planes and it might be close to what they are doing (my guess).

A Caution About “Demoware”

A big word of warning here about demoware. When seeing a demo, remember that you are being shown what makes the product look best and examples that might make it look not so good are not shown.

I was shown three short demos that they picked, I had no choice. I could not pick my own test cases.I also don’t know exactly the mechanism by which it works, which makes it hard to predict the failure mode, as in what type of content might cause artifacts. For example, everything I was shown was very slow moving. If they are using sequential focus planes, I would expect to see problems/artifacts with fast motion.

Avegant’s Plan for Further Development

Avegant is in the process of migrating away from requiring a big PC and onto mobile platforms such as smartphones. Part of this is continuing to address the computing requirement.

Clearly they are going to continue refining the mechanical design of the headset and will either get rid of or slim down the cables and have them go to a mobile computer.  They say that all the components are easily manufactureable and this I would tend to believe. I do wonder how much image data they have to send, but it appears they are able to do with just two HDMI cables (one per eye). It would seem they will be wire tethered to a (mobile) computing system. I’m more concerned about how the image quality might degrade with say fast moving content.

They say they are going to be looking at other (than the birdbath) combiner technology; one would assume a waveguide of some sort to make the optics thinner and lighter. But going to waveguides could hurt image quality and cost and may more limit the FOV.

Avegant is leveraging the openness of Unity to support getting a lot of content generation for their platform. They plan on a Unity SDK to support this migration.

They said they will be looking into alternatives for the DLP display, I would expect LCOS and OLED to be considered. They said that they had also thought about laser beam scanning but their engineers objected to trying for eye safety reasons; engineers are usually the first Guinea pigs for their own designs and a bug could be catastrophic. If they are using time sequential focal planes which is likely, then other technologies such as OLED, LCOS or Laser Beam Scanning cannot generate sequential planes fast enough to support that more than a few (1 to 3) focal planes per 1/60th of a second on a single device at maximum resolution.

How Important is Vergence/Accomodation (V/A)?

The simple answer is that it appears that Magic Leap raised $1.4B by demoing it. But as they say, “all that glitters is not gold.” The V/A conflict issue is real, but it mostly affects content that virtually appears “close”, say inside about 2 meters/6 feet.

Its not clear that for “everyday use” there might be simpler, less expensive and/or using less power ways to deal with V/A conflict such as pupil tracking. Maybe (don’t know) it would be enough to simply change the focus point when the user is doing close up work rather than have multiple focal planes presented to the eye simultaneously .

The business question is whether solving V/A alone will make AR/MR take off? I think the answer to this is clearly no, this is not the last puzzle piece to be solved before AR/MR will take off. It is one of a large number of issues yet to be solved. Additionally, while Avegant says they have solved it economically, what is economical is relative. It still has added weight, power, processing, and costs associated with it and it has negative impacts on the image quality; the classic “squeezing the balloon” problem.

Even if V/A added nothing and cost nothing extra, there are still many other human factor issues that severely limit the size of the market. At times like this, I like to remind people the the Artificial Intelligence boom in the 1980s (over 35 years ago) that it seemed all the big and many small companies were chasing as the next era of computing. There were lots of “breakthroughs” back then too, but the problem was bigger than all the smart people and money could solve.

BTW, it you want to know more about V/A and related issues, I highly recommend reading papers and watching videos by Gordon Wetzstein of Stanford. Particularly note his work on “compressive light field displays” which he started working on while at MIT. He does an excellent job of taking complex issues and making them understandable.

Generally Skeptical About The Near Term Market for AR/MR

I’m skeptical that with or without Avegant’s technology, the Mixed Reality (MR) market is really set to take off for at least 5 years (an likely more). I’ve participated in a lot of revolutionary markets (early video game chips, home/personal computers, graphics accelerators, the Synchronous DRAMs, as well as various display devices) and I’m not a Luddite/flat-earther, I simply understand the challenges still left unsolved and there are many major ones.

Most of the market forecasts for huge volumes in the next 5 years are written by people that don’t have a clue as to what is required, they are more science fiction writers than technologist. You can already see companies like Microsoft with Hololens and before them Google with Google Glass, retrenching/regrouping.

Where Does Avegant Go Business Wise With this Technology?

Avegant is not a big company. They were founding in in 2012. My sources tell me that they have raise about $25M and I have heard that they have only sold about $5M to $10M worth of their first product, the Avegant Glyph. I don’t see the Glyph ever as being a high volume product with a lot of profit to support R&D.

A related aside: I have yet to see a Glyph “in the wild” being using say on an airplane (where they would make the most sense). Even though the Glyph and other headsets exist, people given a choice still by vast percentages still prefer larger smartphones and tablets for watching media on the go. The Glyph sells for about $500 now and is very bulky to store, whereas a tablet easily slips into a backpack or other bag and the display is “free”/built in.

But then, here you have this perhaps “key technology” that works and that is doing something that Magic Leap has raised over $1.4 Billion dollars to try and do. It is possible (having not thoroughly tested either one), that Avegant’s is better than ML’s. Avegant’s technology is likely much more cost effective to make than ML’s, particularly if ML’s depends on using their complex waveguide.

Having not seen the details on either Avegant’s or ML’s method, I can’t say which is “best” both image wise and in terms of cost, nor whether from a patent perspective, whether Avegant’s is different from ML.

So Avegant could try and raise money to do it on their own, but they would have to raise a huge amount to last until the market matures and compete with much bigger companies working in the area. At best they have solved one (of many) interesting puzzle pieces.

It seems obvious (at least to me) that more likely good outcome for them would be as a takeover target by someone that has the deep pockets to invest in mixed reality for the long haul.

But this should certainly make the Magic Leap folks and their investors take notice. With less fanfare, and a heck of a lot less money, Avegant has as solution to the vergence/accommodation problem that ML has made such a big deal about.

Near-Eye Bird Bath Optics Pros and Cons – And IMMY’s Different Approach

Why Birdbaths Optics? Because the Alternative (Waveguides) Must Be Worse (and a teaser)

The idea for this article started when I was looking at the ODG R-9 optical design with OLED microdisplays. They combined an OLED microdisplay that is not very bright in terms of nits with a well known “birdbath” optical design that has very poor light throughput. It seems like a horrible combination. I’m fond of saying “when intelligent people chose a horrible design, the alternative must have seemed worse

I’m going to “beat up” so to speak the birdbath design by showing how some fundamental light throughput numbers multiply out and why the ODG R-9 I measured at CES blocks so much of the real world light. The R-9 also has a serious issue with reflections. This is the same design that a number of publications considered among the “best innovations” of CES; it seems to me that they must have only looked at the display superficially.

Flat waveguides such as used by Hololens, Vuzix. Wave Optics, and Lumus as well as expected from Magic Leap get most of the attention, but I see a much larger number of designs using what is known as a “birdbath” and similar optical designs. Waveguides are no secret these days and the fact that so many designs still use the birdbath optics tells you a lot about the issues with waveguides. Toward the end of this article, I’m going to talk a little about the IMMY design that replaces part of the birdbath design.

As a teaser, this article is to help prepare for an article on an interesting new headset I will be writing about next week.

Birdbath Optics (So Common It Has a Name)

The birdbath combines two main optical components, a spherical mirror/combiner (part-mirror) and a beam splitter. The name  “birdbath” comes from the spherical mirror/combiner looking like a typical birdbath. It is used because it generally is comparatively inexpensive to down right cheap while also being relatively small/compact while having  good overall image quality. The design fundamentally supports a very wide FOV, which are at best difficult to support with waveguides. The big downsides are light throughput and reflections.

A few words about Nits (Cd/m²) and Micro-OLEDs

I don’t have time here to get into a detailed explanation of nits (Cd/m²). Nits is the measure of light at a given angle whereas lumens is the total light output. The simplest analogy is to water hose with a nozzle (apropos here since we are talking about birdbaths). Consider two spray patterns, one with a tight jet of water and one with a wide fan pattern both outputting the exact same total amount of water per minute (lumens in this analogy). The one with the tight patter would have high water pressure (nits in this analogy) over a narrow angle where the fan spray would have lower water pressure (nits) over a wider angle.

Additionally, it would be relatively easy to put something in the way of the tight jet and turn it into a fan spray but there is no way to turn the fan spray into a jet. This applies to light as well, it is much easier to go from high nits over are narrow angle to lower nits over a wide angle (say with a diffuser) but you can’t go the other way easily.

Light from an OLED is like the fan spray only it covers a 180 degree hemisphere. This can be good for a large flat panel were you want a wide viewing angle but is a problem for a near eye display where you want to funnel all the light into the eye because so much of the light will miss pupil of the eye and is wasted. With an LED you have a relative small point of light that can be funneled/collimated into a tight “jet” of light to illuminate an LCOS or DLP microdisplay.

The combination of light output from LEDs and the ability to collimate the light means you can easily get tens of thousands of nits with an LCOS or DLP illuminated microdisplay were OLED microdisplays typically only have 200 to 300 nits. This is major reason why most see-through near eye displays use LCOS and DLP over OLEDs.

Basic Non-Polarizing Birdbath (example, ODG R-9)

The birdbath has two main optical components, a flat beam splitter and a spherical mirror. In the case a see-through designs, the the spherical mirror is a partial mirror so the spherical element acts as a combiner. The figure below is taken from an Osterhaut Design Group (ODG) patent which and shows simple birdbath using an OLED microdisplay such as their ODG R-9. Depending on various design requirements, the curvature of the mirror, and the distances, the lenses 16920 in the figure may not be necessary.

The light from the display device, in the case of the ODG R-9 is a OLED microdisplay, is first reflect away from the eye and perpendicular (on-axis) to the curved beam splitter so that a simple spherical combiner will uniformly magnify and move the apparent focus point of the image (if not “on axis” the image will be distorted and the magnification will vary across the image). The curved combiner (partial mirror) has minimal optical distortion on light passing through.

Light Losses (Multiplication is a Killer)

A big downside to the birdbath design is the loss of light. The image light must make two passes at the beam splitter, a reflective and transmissive, with a reflective (Br) and transmissive (Bt) percentages of light. The light making it through both passes is Lr x Lt.  A 50/50 beam splitter might be about 48% reflective and transmissive (with say a 4% combined loss), and the light throughput (Br x Bt) in this example is only 48% x 48%= ~23%. And “50/50” ratio is the best case; if we assume a nominally 80/20 beam splitter (with still 4% total loss) we get 78% x 18% = ~14% of the light making through the two passes.

Next we have the light loss of the spherical combiner. This is a trade-off of image light being reflected (Cr) versus being transmitted  (Ct) to the real world where Cr + Ct is less than 1 due to losses. Generally you want the Cr to be low so the Ct can be high so you can see out (otherwise it is not much of a see through display).

So lets say the combiner has Cr=11% and the Ct=75% with about 4% loss with the 50/50 beamsplitter. The net light throughput assuming a “50/50” beam splitter and a 75% transmissive combiner is Br x Cr X Bt = ~2.5% !!! These multiplicative losses lose all but a small percentage of the display’s light. And consider that the “real world” net light throughput is Ct x Bt which would be 48% x 75% = 36% which is not great and would be too dark for indoor use.

Now lets say you want the glasses to be at least 80% transmissive so they would be considered usable indoors. You might have the combiner Ct=90% making Cr=6% (with 4% loss) and then Bt=90% making Br=6%. This gives the real world transmissive about 90%x90% = 81%.  But then you go back and realize the display light equation (Br x Cr X Bt) becomes 6%x6%x90% = 0.3%. Yes, only 3/1000ths of the starting image light makes it through. 

Why the ODG R-9 Is Only About 4% to 5% “See-Through”

Ok, now back to the specific case of the ODG R-9. The ODG R-9 has an OLED microdisplay that most like has about 250 nits (200 to 250 nits is commonly available today) and they need to get about 50 nits (roughly) to the eye from the display to have a decent image brightness indoors in a dark room (or one where most of the real world light is blocked). This means they need a total throughput of 50/250=20%. The best you can do with two passes through a beam splitter (see above) is about 23%.  This forces the spherical combiner to be highly reflective with little transmission. You need something that reflects 20/23=~87% of the light and only about 9% transmissive. The real world light then making it through to the eye is then about 9% x 48% (Ct x Bt) or about 4.3%.

There are some other effects such as the amount of total magnification and I don’t know exactly what their OLED display is outputting display and exact nits at the eyepiece, but I believe my numbers are in the ballpark. My camera estimates for the ODG R-9 came in a between 4% and 5%. When you are blocking about 95% of the real world light, are you really much of a “see-through” display?

Note, all this is BEFORE you consider adding say optical shutters or something like Varilux® light blocking. Normally the birdbath design is used with non-see through designs (where you don’t have the see-through losses) or with DLP® or LCOS devices illuminated with much higher nits (can be in the 10’s of thousands) for see through designs so they can afford the high losses of light.

Seeing Double

There are also issues with getting a double image off of each face of plate beam splitter and other reflections. Depending on the quality of each face, a percentage of light is going to reflect or pass through that you don’t want. This light will be slightly displaced based on the thickness of the beamsplitter. And because the light makes two passes, there are two opportunities to cause double images. Any light that is reasonably “in focus” is going to show up as a ghost/double image (for good or evil, your eye has a wide dynamic range and can see even faint ghost images). Below is a picture I took with my iPhone camera of a white and clear menu through the ODG R-9. I counted at least 4 ghost images (see colored arrows).

As a sort of reference, you can see the double image effect of the beamsplitter going in the opposite direction to the image light with my badge and the word “Media” and its ghost (in the red oval).

Alternative Birdbath Using Polarized Light (Google Glass)

Google Glass used a different variation of the birdbath design. They were willing to accept a much smaller field of view and thus could reasonably embedded the optics in glass. It is interesting here to compare and contrast this design with the ODG one above.

First they started with an LCOS microdisplay that was illuminated by LEDs that can be very much brighter and more collimated light resulting in much higher (can be orders of magnitude) starting nits than an OLED microdisplay can output. The LED light is passed through a polarizing beam splitter than will pass about 45% P light to the LCOS device (245). Note a polarizing beam splitter passes one polarization and reflect the other unlike a the partially reflecting beam splitter in the ODG design above. The LCOS panel will rotate the light to be seen to S polarization so that it will reflect about 98% (with say 2% loss) of the S light.

The light then goes to a second polarizing beam splitter that is also acting as the “combiner” that the user sees the real world through. This beam splitter is set up to pass about 90% of the S light and reflect about 98% of the P light (they are usually much better/more-efficient in reflection). You should notice that they have a λ/4 (quarter wave = 45 degree rotation) film between the beam splitter and the spherical mirror which will rotate the light 90 degrees (turning it from S to P) after it passes through it twice. This  λ/4 “trick” is commonly used with polarized light. And since you don’t have to look through the mirror, it can be say 98% reflective with say another 3% loss for the λ/4.

With this design, about 45% (one pass through the beamsplitter) of the real world makes it through, but only light polarized the “right way” makes it through which makes looking at say LCD monitors problematical. By using the quarter wave film the design is pretty efficient AFTER you loose about 55% of the LED light in polarizing it initially. There are also less reflection issues because all the films and optics are embedded in glass so you don’t get these air to glass index mismatches of off two surfaces of a relatively thick plate that cause unwanted reflections/double images.

Google Glass design has a lot of downsides too. There is nothing you can do to get the light throughput of the real world much above 45% and there are always the problems of looking through a polarizer. But the biggest downside is that it cannot be scaled up for larger fields of view and/or more eye relief. As you scale this design up the block of glass becomes large, heavy and expensive as well as being very intrusive/distorting in looking through a big thick piece of glass.

Without getting too sidetracked, Lumus in effect takes the one thick beam splitter, and piece-wise cuts it into multiple smaller beam splitters to make the glass thinner. But this also means you can’t use the spherical mirror of a birdbath design with it and so you require optics before the beam splitting and the light losses of the the piece-wise beam splitting are much larger than a single beamsplitter.

Larger Designs

An alternative design would mix the polarizing beamsplitters of the Google Glass design above with the configuration of ODG design above.  And this has been done many times through the years with LCOS panels that use polarized light (an example can be found in this 2003 paper). The spherical mirror/combiner will be a partial non-polarizing mirror so you can see through it and a quarter waveplate is used between the spherical combiner and the polarizing beam splitter. You are then stuck with about 45% of the real world light times the light throughput of the spherical combiner.

A DLP with a “birdbath” would typically use the non-polarizing beam splitter with a design similar to the ODG R-9 but replacing the OLED microdisplay with a DLP and illumination. As an example, Magic Leap did this with a DLP but adding a variable focus lens to support focus planes.

BTW, by the time you polarized the light from an OLED or DLP microdisplay, there would not be much if any of an efficiency advantage sense to use polarizing beamsplitters. Additionally, the light from the OLED is so diffused (varied in angles) that it would likely not behave well going through the beam splitters.

IMMY – Eliminating the Beamsplitter

The biggest light efficiency killer in the birdbath design is the combined reflective/transmissive passes via the beamsplitter. IMMY effectively replaces the beamsplitter of the birdbath design with two small curved mirrors that he correct for the image being reflected off-axis from the larger curved combiner. I have not yet seen how well this design works in practice but at least the numbers would appear to work better. One can expect only a few percentage points of light being lost off of each of the two small mirrors so that maybe 95% of the light from the OLED display make it to the large combiner. Then you have the the combiner reflection percentage (Cr) multiplying by about 95% rather than the roughly 23% of the birdbath beam splitter.

The real world light also benefits as it only has to go through a single combiner transmissive loss (Ct) and no beamsplitter (Bt) loses. Taking the OGD R-9 example above and assuming we started with a 250 nit OLED and with 50 nits to the eye, we could get there with about an 75% transmissive combiner. The numbers are at least starting to get into the ballpark where improvements in OLED Microdisplays could fit at least for indoor use (outdoor designs without sunshading/shutters need on the order of 3,000 to 4,000 nits).

It should be noted that IMMY says they also have “Variable transmission outer lens with segmented addressability” to support outdoor use and variable occlusion. Once again this is their claim, I have not yet tried it out in practice so I don’t know the issues/limitations. My use of IMMY here is to contrast it with the classical birdbath designs above.

A possible downside to the the IMMY multi-mirror design is bulk/size has seen below. Also noticed the two adjustment wheel for each eye. One is for interpupillary distance to make sure the optics line up center with the pupils which varies from person to person. The other knob is a diopter (focus) adjustment which also suggests you can’t wear these over your normal glasses.

As I have said, I have not seen IMMY’s to see how it works and to see what faults it might have (nothing is perfect) so this is in no way an endorsement for their design. The design is so straight forward and a seemingly obvious solution to the beam splitter loss problem that it makes me wonder why nobody has been using it earlier; usually in these cases, there is a big flaw that is not so obvious.

See-Though AR Is Tough Particularly for OLED

As one person told me at CES, “Making a near eye display see-through generally more than double the cost” to which I would add, “it also has serious adverse affects on the image quality“.

The birdbath design wastes a lot of light as do every other see-through designs. Waveguide designs can be equally or more light wasteful than the birdbath. At least on paper, the IMMY design would appear to waste a less than most others. But to make a device say 90% see through, at best you start by throwing away over 90% of the image light/nits generated, and often more than 95%.

The most common solution to day is to start with LED illuminated LCOS or DLP microdisplay so you have a lot of nits to throw at the problem and just accept the light waste. OLEDs are still orders of magnitude in brightness/nits away from being able to compete with LCOS and DLP with brute force.

 

CES 2017 AR, What Problem Are They Trying To Solve?

Introduction

First off, this post is a few weeks late. I got sick on returning from CES and then got busy with some other pressing activities.

At left is a picture that caught me next to the Lumus Maximus demo at CES from Imagineality’s “CES 2017: Top 6 AR Tech Innovations“. Unfortunately they missed that in the Lumus booth at about the same time was a person from Magic Leap and Microsoft’s Hololens (it turned out we all knew each other from prior associations).

Among Imagineality’s top 6 “AR Innovations” were ODG’s R-8/R-9 Glasses (#1) and Lumus’s Maximus 55 degree FOV waveguide (#3). From what I heard at CES and saw in the writeups, ODG and Lumus did garner a lot of attention. But by necessity, theses type of lists are pretty shallow in their evaluations and I try to do on this blog is go a bit deeper into the technology and how it applies to the market.

Among the near eye display companies I looked at during CES include Lumus, ODG, Vuzix, Real Wear, Kopin, Wave Optics, Syndiant, Cremotech, QD Laser, Blaze (division of eMagin) plus several companies I met with privately. As interesting to me as their technologies was there different takes on the market.

For this article, I am mostly going to focus on the Industrial / Enterprise market. This is were most of the AR products are shipping today. In future articles, I plan to go into other markets and more of a deep dive on the the technology.

What Is the Problem They Are Trying to Solve?

I have had an number of people asked me what was the best or most interesting AR thing I saw at CES 2017, and I realized that this was at best an incomplete question. You first need to ask, “What problem are they trying to solve?” Which leads to “how well does it solve that problem?” and “how big is that market?

One big takeaway I had at CES having talked to a number of different company’s is that the various headset designs were, intentionally or not, often aimed at very different applications and use cases. Its pretty hard to compare a headset that almost totally blocks a user’s forward view but with a high resolution display to one that is a lightweight information device that is highly see-through but with a low resolution image.

Key Characteristics

AR means a lot of different things to different people. In talking to a number of companies, you found they were worried about different issues. Broadly you can separate into two classes:

  1. Mixed Reality – ex. Hololens
  2. Informational / “Data Snacking”- ex. Google Glass

For most of the companies were focused on industrial / enterprise / business uses at least for the near future and in this market the issues include:

  1. Cost
  2. Resolution/Contrast/Image Quality
  3. Weight/Comfort
  4. See-through and/or look over
  5. Peripheral vision blocking
  6. Field of view (small)
  7. Battery life per charge

For all the talk about mixed reality (ala Hololens and Magic Leap), most of the companies selling product today are focused on helping people “do a job.” This is where they see the biggest market for AR today. It will be “boring” to the people wanting the “world of the future” mixed reality being promised by Hololens and Magic Leap.

You have to step back and look at the market these companies are trying to serve. There are people working on a factory floor or maybe driving a truck where it would be dangerous to obscure a person’s vision of the real world. They want 85% or more transparency, very lightweight and highly comfortable so it can be worn for 8 hours straight, and almost no blocking of peripheral vision. If they want to fan out to a large market, they have to be cost effective which generally means they have to cost less than $1,000.

To meet the market requirements, they sacrifice field of view and image quality. In fact, they often want a narrow FOV so it does not interfere with the user’s normal vision. They are not trying to watch movies or play video games, they are trying to give necessary information for person doing a job than then get out of the way.

Looking In Different Places For the Information

I am often a hard audience. I’m not interested in the marketing spiel, I’m looking for what is the target market/application and what are the facts and figure and how is it being done. I wanting to measure things when the demos in the boths are all about trying to dazzle the audience.

As a case in point, let’s take ODG’s R-9 headset, most people were impressed with the image quality from ODG’s optics with a 1080p OLED display, which was reasonably good (they still had some serious image problems caused by their optics that I will get into in future articles).

But what struck me was how dark the see-through/real world was when viewed in the demos. From what I could calculate, they are blocking about 95% of the real world light in the demos. They also are too heavy and block too much of a person’s vision compared to other products; in short they are at best going after a totally different market.

Industrial Market

Vuzix is representative of the companies focused on industrial / enterprise applications. They are using with waveguides with about 87% transparency (although they often tint it or uses photochromic light sensitive tinting). Also the locate the image toward the outside of the use’s view so that even when an image it displayed (note in the image below-right that the exit port of the waveguide is on the outside and not in the center as it would be on say a Hololens).

The images at right were captured from a Robert Scoble interview with Paul Travers, CEO of Vuzix. BTW, the first ten minutes of the video are relatively interesting on how Vuzix waveguides work but after that there is a bunch of what I consider silly future talk and flights of fancy that I would take issue with. This video shows the “raw waveguides” and how they work.

Another approach to this category is Realwear. They have a “look-over” display that is not see through but their whole design is make to not block the rest of the users forward vision. The display is on a hinge so it can be totally swung out of the way when not in use.

Conclusion

What drew the attention of most of the media coverage of AR at CES was how “sexy” the technology was and this usually meant FOV, resolution, and image quality. But the companies that were actually selling products were more focused on their user’s needs which often don’t line up with what gets the most press and awards.

 

ODG R-9: A Peak Behind the Video Curtain

Introduction

With all the hype about Hololens and Magic Leap (ML), Osterhout Design Group (ODG) often gets overlooked. ODG has not spent as much (but still spending 10’s of millions).  ODG has many more years working in field albeit primarily in the military/industrial market.

I don’t know about all the tracking, image generation, wireless, and other features, but ODG should have the best image quality of the three (ODG, Hololens, and ML).  Their image quality was reasonably well demonstrated in a short “through the optics” video ODG made (above and below are a couple crops from frames of that video). While you can only tell so much from a YouTube video (which limits the image quality), they are not afraid to show reasonably small text and large white areas (both of which would show up problems with lesser quality displays).

Update 2016-12-26: A reader “Paul” wrote that he has seen the “cars and ball” demo live. That while the display was locked down, the cubes were movable in the demo. Paul did not know where the computing was done and it could have been done on a separate computer. So it is possible that I got the dividing line between what was “real” and preplanned a bit off. I certainly don’t think that they detected that there was a clear and a black cube, and much of the demo had to have been pre-planned/staged. Certainly it is not a demonstration of what would happen if you were wearing the headset. 

Drawn To Contradictions

As I wrote last time, I’m not a fan of marketing hyperbole and I think calling their 1080p per eye a “4K experience” is at best deliberately confusing. I also had a problem with what Jame Mackie (independent) reporter said about the section of the video starting at 2:29 with the cars and balls in it and linked to here. What I was seeing was not what he was describing.

The sequence starts with a title slide saying, “Shot through ODG smart-glasses with an iPhone 6” which I think is true as far as it what is written. But the commentary by Jame Mackie was inaccurate and misleading:

So now for a real look at how the Holograms appear, as you can see the spatial and geometric tracking is very good. What really strikes me is the accuracy and positioning.  Look how these real life objects {referring to the blocks} sit so effortlessly with the Holograms

I don’t know what ODG told the reporter or if he just made it up, but at best the description is very misleading. I don’t believe there is any tracking being done and all the image rendering  was generated off-line.

What Real Virtual Reality Looks Like

Before getting into detail on the “fake” part of the video, it is instructive to look at a “real” clip. In another part of the video there is a sequence showing replacing the tape in a label maker (starting at 3:25).

In this case, they hand-held the camera rig with the glasses. In the first picture below you can see on the phone that that they are inserting virtual a virtual object, circled in green on the phone, and missing in the “real world”. 

As the handheld rig moves around the virtual elements moves and track with the camera movement reasonably well.  There is every indication that what you are seeing is what they can actually with tracking in an image generation. The virtual elements in three clips from the video are circled in green below.

The virtual elements are in the real demonstration are simple with no lighting effects or reflections off the table. Jame Mackie in the video talks as if he actually tried this demonstrations rather than just describing what he thinks the video shows.

First Clue – Camera Locked Down

The first clue that Cars and Balls video was setup/staged video is that the camera/headset never moves. If the tracking and everything was so good, why not prove it by moving rig with the headset and camera.

Locking the camera down makes it vastly easier to match up pre-recorded/drawn material. As soon as you see the camera locked down with a headset, you should be suspicious of whether some or all of the video has been faked.

Second Clue – Black Cube Highlights Disappeared

Take a look at the black cube below showing the camera rig setup and particularly the two edges of the black cube inside the orange ovals I added. Notice the highlight on the bottom half of each edge and how it looks like the front edge of the clear plastic cube. It looks to me like the black cube was made from a clear cube with the inside colored black. 

Now look at the crop at left from the first frames showing the through the iPhone and optics view. The highlight on the clear cube is still there but strangely the highlights on the black cube have disappeared. Either they switched out the cube or the highlights were taking out in post processing. It is hard to tell because the lighting is so dim.

Third Clue – Looks Too Good – Can’t Be Real Time

2016-12-16 Update: After thinking about it some more, the rending might be in real time. They probably knew there would be a clear and black  box and rendered accordingly with simpler rendering than ray tracing. Unknown is whether the headset or another computer did the rendering. 

According to comments by “Paul” he has seen the the system running. The Headset was locked-down which is a clue that is some “cheating” going on, but he said the blocks were not in a fixed location. 

Looking “too good” is a big giveaway. The cars in the video with all their reflections were clearly using much more complex ray-tracing that was computed off-line. Look at all the reflections of the cars at left. There are both cars reflecting off the table and off the clear cube the flashing light on the police car also acts like a light source in the way it reflect off the cube.

4th Clue: How Did The Headset Know The Cube Was Clear?

One of the first things that I noticed was the clear cube. How are the cameras and sensors going to know it is clear and how it will reflect/refract light? That would be a lot of expensive sensing and processing to figure this out just to deal with this case.

5th Clue: Black Cube Misaligned

On the right is a crop from a frame where the reflection of the car is wrong. From prior frames, I have outlined the black cube with red lines. But the yellow care is visible when it should be hidden by the black cube. There also a reflection in the side of the cube around where the render image is expecting the black cube to be (orange line shows the reflection point).

How It Was Done

2016-12-26 Updates (in blue): Based on the available evidence, the video is uses some amount of misdirection. The video was pre-rendered using a ray tracing computer model with a clear cube and a perfect black shiny cube on a shiny black table being modeled.  They knew that a clear and black cube would be in the scene and locked down the camera. They may have use the sensors to detect where the blocks are to know how to rendering the image. 

They either didn’t have the sensing and tracking ability or the the rendering ability to allow the camera to move.

Likely the grids you see in the video are NOT the headset detecting the scene but exactly the opposite; they are guides to the person setting up the “live” shot as to where to place the real cubes to match where they where in the model. They got the black cube in slightly the wrong place.

The final video was shot through the optics, but the cars and balls where running around the a clear and black cubes assuming they would be there when the video was rendered. No tracking, surface detection, or complex rendering was required, just the ability to playback a pre-recorded video.

Comments

I’m not trying to pick on ODG. Their hype so far less than what I have seen from Hololens and Magic Leap.  I don’t mind companies “simulating” what images will look like provided they indicate they are simulated effects. I certainly understand that through the optics videos and pictures will not look as good as simulated images. But when they jump back and forth between real and simulated effects and other tricks, you start to wonder what is “real.”

ODG R-9 (Horizon): 1080p Per Eye, Yes Really

Lazy Reporting – The Marketing Hyperbole’s Friend

While I have not ODG’s R-9 in person yet, I fully expect that it will look a lot better than Microsoft’s Hololens. I even think it will look better in terms of image quality than what I think ML is working on. But that is not the key point of this article.

But there is also a layer of marketing hyperbole and misreporting going on that I wanted to clear up. I’m just playing referee hear and calling it like a see them.

ODG 4K “Experience” with 2K (1080p) Per Eye


2016-12-28 Update – It appears I was a bit behind on the marketing hype vernacular being used in VR. Most VR displays today, such as Oculus, take a single flat panel and split it between two eyes. So each eye sees less than half (some pixels are cut off) of the pixels. Since bigger is better in marketing, VR makers like to quote the whole flat panel size and not the resolution per eye. 

ODG “marketing problem” is that historically a person working with near eye displays would talk in in terms of “resolution per eye” but this would not be as big by 2X as the flat panel based VR companies market. Rather than being at a marketing hype disadvantage, ODG apparently has adopted the VR flat panel vernacular, however misleading it might be. 


I have not met Jame Mackie nor have I watched a lot of his videos, but he obviously does not understand display technology well and I would take anything he says about video quality with a grain of salt. If should have understood that ODG’s R-9 has is not “4K” as in the title of his YouTube video: ODG 4K Augmented Reality Review, better than HoloLens ?. And specifically he should of asked questions when the ODG employee stated at about 2:22, “it’s two 1080p displays to each eye, so it is offering a 4K experience.

What the ODG marketing person was I think trying to say was that somehow having 1080p (also known as 2K) for each eye was like having a 2 times 2K or “4K equivalent” it is not. In stumbling to try and make the “4K equivalent” statement, the ODG person simply tripped over his own tongue to and said that there were two 1080p devices per eye, when he meant to say there were two 1080p devices in the glasses (one per eye). Unfortunately Jame Mackie didn’t know the difference and did not realize that this would have been impossible in the R-9’s form factor and didn’t follow up with a question. So the  false information got copied into the title of the video and was left as if it was true.

VRMA’s Micah Blumberg Asks The Right Questions and Get The Right Answer – 1080p Per Eye

This can be cleared up in the following video interview with Nima Shams, ODG’s VP of Headworn: “Project Horizon” AR VR Headset by VRMA Virtual Reality Media“. When asked by Micah Blumberg starting at about 3:50 into the video, “So this is the 4K headset” to which Nima Sham responds, “so it is 1080p to each eye” to which Blumberg astutely makes sure to clarify with, “so we’re seeing 1080p right now and not 4K” to which Nima Sham responds, “okay, yeah, you are seeing 2K to each eye independently“.  And they even added an overlay in the video “confirmed 2K per eye.” (see inside the read circle I added).

A Single 1080p OLED Microdisplay Per Eye

Even with “only” 1080p OLED microdisplay per eye with a simple optical path the ODG R-9 should have superior image quality compared to Hololens:

  1. OLEDs should give better contrast than Hololens’ Himax LCOS device
  2. There will be no field sequential color breakup with head or image movment as there can be with Hololens
  3. They have about the same pixels per arc-minute at Hololens but with more pixels they increase FOV from about 37 degrees to about 50 degrees.
  4. Using a simple plate combiner rather than the torturous path of Hololens’ waveguide, I would expect the pixels to be sharper and with little visible chroma aberrations and no “waveguide glow” (out of focus light around bright objects). So even though the angular resolution of the two is roughly the same, I would expect the R-9 to look sharper/higher resolution.

The known downsides compared to Hololens:

  1. The ODG R-9 does not appear to have enough “eye relief” to support wearing glasses.
  2. The device puts a lot of weight on the nose and ears of the user.

I’m not clear about the level of tracking but ODG’s R-9 does not appear to have the number of cameras and sensors that Hololens has for mapping/locking the real world. We will have to wait and see for more testing on this issue. I also don’t have information on how comparable the level of image and other processing is done by the ODG relative to Horizon.

Conclusion

Micah Blumberg showed the difference between just repeating what he is told and knowing enough to ask the right followup question. He knew that ODG had a 4K marketing message was confusing and that what he was being told was at odds with what he was being told so he made sure to clarify it. Unfortunately while James Makie got the “scoop” on the R-9 being the product name for Horizon, he totally misreported the resolution and other things in his report (more on that later).

Lazy and ill informed reporters are the friend and amplifier of marketing hyperbole. It appears that ODG is trying to equate dual 1080p displays per eye with being something like “4K” which is really is not. You need 1080p (also known as 2K) per eye to do stereo 1080p, but that is not the same as “4K” which which is defined as 3840×2060 resolution or 4 times the spatial resolution of 1080p. Beyond this, qualifiers of like “4K “Experience” which has no real meaning are easily dropped and ill informed reporters will report it as “4K” which does have a real meaning.

Also, my point is not meant to pick on ODG, they just happen to be the case at hand. Unfortunately, most of the display market is “liars poker.” Companies are fudging on display specs all the time. I rarely see a projector that meets or exceeds it “spec” lumens. Resolutions are often spec’ed in misleading ways (such as specifying the input rather than the “native” resolution). Contrast is another place were “creative marketing” is heavily used. The problem is that because “everyone is doing it” people feel they have to just to keep up.

The problem for me comes when I have to deal with people that have read false or misleading information. It gets hard to separate truth from marketing exaggeration.

This also goes back to why I didn’t put much stock in the magazine reports about Magic Leap looked. These reports were made by people that were easy to impress and likely not knowledgeable about display devices. They probably could not tell the display resolution by 2X in each direction or would notice even moderately severe image problems. If they were shown a flashy looking demo they would assume it was high resolution.

One More Thing – Misleading/Fake “True Video”

It will take a while to explain (maybe next time), I believe the James Makie video also falsely indicates at 2:29 in the video (the part with the cars and the metal balls on the table), that what is being shown is how the ODG R-9 works.

In fact, while the images of the cars and balls are generated by the R-9, there tracking of the real world and the reflections off the surfaces are a well orchestrated FAKE. Basically they were playing a pre-rendered video though the glasses (so that part is likely real). But clear and black boxes on the table where props there to “sell the viewer” that this was being rendered on the fly.  There also appears to be some post-processing in the video. Most notably, it looks like the black box was modified in post production. There are several clues in the video that will take a while to explain.

To be fair to ODG, the video does not claim to not be fake/processed, but the way it is presented within Jame Makie’s video is extremely misleading to say the least. It could be that the video was taken out of context.

For the record, I do believe the video starting at 4:02 which I have analyze before is a genuine through the optics video and is correctly so identified on the video. I’m not sure about the “tape replacement” video at 3:23, I think it may be genuine or it could be some cleaver orchestrating.

Kopin Entering OLED Microdisplay Market

Kopin Making OLED Microdisplays

Kopin announced today that they are getting into the OLED Microdisplay business. This is particularly notable because Kopin has been a long time (since 1999) manufacture of transmissive LCD microdisplays used in camera viewfinders and near eye display devices. They also bought Forth Dimension Displays back in 2011, a maker of high resolution ferroelectric reflective LCOS used in higher end near eye products.

OLED Microdisplays Trending in AR/VR Market

With the rare exception of the large and bulky Meta 2, microdisplays, (LCOS, DLP, OLED, and transmissive LCD), dominate the AR/MR see-through market. They also are a significant factor in VR and other non-see-through near eye displays

Kopins entry seems to be part of what may be a trend toward OLED Microdisplays used in near eye products. ODG’s next generation “Horizon” AR glasses is switching from LCOS (used in the current R7) to OLED microdisplays. Epson which was a direct competitor to Kopin in transmissive LCD, switched to OLED microdisplays in their new Moverio BT-300 AR glasses announced back in February.

OLED Microdisplays Could Make VR and Non-See-Through Headsets Smaller/Lighter

Today most of the VR headsets are following Oculus’s use of large flat panels with simple optics. This leads to large bulky headsets, but the cost of OLED and LCD flat panels is so low compared to other microdisplays with their optics that they win out. OLED microdisplays have been far too expensive to compete on price with the larger flat panels, but this could change as there are more entrants into the OLED microdisplay market.

OLEDs Don’t Work With Waveguides As Used By Hololens and Magic Leap

It should be noted that the broad spectrum and diffuse light emitted by OLED is generally incompatible with the flat waveguide optics such as used by Hololens and is expected from Magic Leap (ML). So don’t expect to see these being used by Hololens and ML anytime soon unless they radically redesign their optics. Illuminated microdisplays like DLP and LCOS can be illuminated by narrower spectrum light sources such as LED and even lasers and the light can be highly collimated by the illumination optics.

Transmissive LCD Microdisplays Can’t Compete As Resolution Increases

If anything, this announcement from Kopin is the last nail in the coffin of the transmissive LCD microdisplay in the future. OLED Microdisplays have the advantages over transmissive Micro-LCD in the ability to go to higher resolution and smaller pixels to keep the overall display size down for a given resolution when compared to transmissive LCD. OLEDs consume less power for the same brightness than transmissive LCD. OLED also have much better contrast. As resolution increases transmissive LCDs cannot compete.

OLEDs Microdisplays More Of A Mixed Set of Pros and Cons Compared to LCOS and DLP.

There is a mix of pro’s and con’s when comparing OLED microdisplays with LCOS and DLP. The Pro’s for OLED over LCOS and DLP include:

  1. Significantly simpler optical path (illumination path not in the way). Enables optical solutions not possible with reflective microdisplays
  2. Lower power for a given brightness
  3. Separate RGB subpixels so there is no field sequential color breakup
  4. Higher contrast.

The advantages for LCOS and DLP reflective technologies over OLED microdisplays include:

  1. Smaller pixel equals a smaller display for a given resoluion. DLP and LCOS pixels are typically from 2 to 10 times smaller in area per pixel.
  2. Ability to use narrow band light sources which enable the use of waveguides (flat optical combiners).
  3. Higher brightness
  4. Longer lifetime
  5. Lower cost even including the extra optics and illumination

Up until recently, the cost of OLED microdisplays were so high that only defense contractors and other applications that could afford the high cost could consider them. But that seems to be changing. Also historically the brightness and lifetimes of OLED microdisplays were limited. But companies are making progress.

OLED Microdisplay Competition

Kopin is long from being the first and certainly is not the biggest entry in the OLED microdisplay market. But Kopin does have a history of selling volume into the microdisplay market. The list of known competitors includes:

  1. Sony appears to be the biggest player. They have been building OLED microdisplays for many years for use in camera viewfinders. They are starting to bring higher resolution products to the market and bring the costs down.
  2. eMagin is a 23-year-old “startup”. They have a lot of base technology and are a “pure play” stock wise. But they have failed to break through and are in danger of being outrun by big companies
  3. MicoOLED – Small France startup – not sure where they really stand.
  4. Samsung – nothing announced but they have all the technology necessary to make them. Update: Ron Mertens of OLED-Info.com informed me that I was rumored that the second generation of Google Glass was considering a Samsung OLED microdisplay and that Samsung had presented a paper going back to 2011.
  5.  LG – nothing announced but they have all the technology necessary to make them.

I included Samsung and LG above not because I have seen or heard of them working on them, but I would be amazed if they didn’t at least have a significant R&D effort given their sets of expertise and their extreme interest in this market.

For More Information:

For more complete information on the OLED microdisplay market, you might want go to OLED-info that has been following both large flat panel and small OLED microdisplay devices for many years. They also have two reports available, OLED Microdisplays Market Report and OLED for VR and AR Market Report.

For those who want to know more about Kopin’s manufacturing plan, Chris Chinnock of Insight Media has an interesting article outlining Kopin’s fabless development strategy.

AR/MR Optics for Combining Light for a See-Through Display (Part 1)

combiners-sample-cropIn general, people find the combining of an image with the real world somewhat magical; we see this with heads up displays (HUDs) as well as Augmented/Mixed Reality (AR/MR) headsets.   Unlike Starwars R2D2 projection into thin air which was pure movie magic (i.e. fake/impossible), light rays need something to bounce off to redirect them into a person’s eye from the image source.  We call this optical device that combines the computer image with the real world a “combiner.”

In effect, a combiner works like a partial mirror.  It reflects or redirects the display light to the eye while letting light through from the real world.  This is not, repeat not, a hologram which it is being mistakenly called by several companies today.  Over 99% people think or call “holograms” today are not, but rather simple optical combining (also known as the Pepper’s Ghost effect).

I’m only going to cover a few of the more popular/newer/more-interesting combiner examples.  For a more complete and more technical survey, I would highly recommend a presentation by Kessler Optics. My goal here is not to make anyone an optics expert but rather to gain insight into what companies are doing why.

With headsets, the display device(s) is too near for the human eye to focus and there are other issues such as making a big enough “pupil/eyebox” so the alignment of the display to the eye is not overly critical. With one exception (the Meta 2) there are separate optics  that move apparent focus point out (usually they try to put it in a person’s “far” vision as this is more comfortable when mixing with the real word”.  In the case of Magic Leap, they appear to be taking the focus issue to a new level with “light fields” that I plan to discuss the next article.

With combiners there is both the effect you want, i.e. redirecting the computer image into the person’s eye, with the potentially undesirable effects the combiner will cause in seeing through it to the real world.  A partial list of the issues includes:

  1. Dimming
  2. Distortion
  3. Double/ghost images
  4. Diffraction effects of color separation and blurring
  5. Seeing the edge of the combiner

In addition to the optical issues, the combiner adds weight, cost, and size.  Then there are aesthetic issues, particularly how they make the user’s eye look/or if they affect how others see the user’s eyes; humans are very sensitive to how other people’s eye look (see the EPSON BT-300 below as an example).

FOV and Combiner Size

There is a lot of desire to support a wide Field Of View (FOV) and for combiners a wide FOV means the combiner has to be big.  The wider the FOV and the farther the combiner is from the eye the bigger the combiner has to get (there is not way around this fact, it is a matter of physics).   One way companies “cheat” is to not support a person wearing their glasses at all (like Google Glass did).

The simple (not taking everything into effect) equation (in excel) to computer the minimum width of a combiner is =2*TAN(RADIANS(A1/2))*B1 where A1 is the FOV in degrees and and B1 is the distance to farthest part combiner.  Glasses are typically about 0.6 to 0.8 inches from the eye and the size of the glasses and the frames you want about 1.2 inches or more of eye relief. For a 40 degree wide FOV at 1.2 inches this translates to 0.9″, at 60 degrees 1.4″ and for 100 degrees it is 2.9″ which starts becoming impractical (typical lenses on glasses are about 2″ wide).

For, very wide FOV displays (over 100 degree), the combiner has to be so near your eye that supporting glasses becomes impossible. The formula above will let your try your own assumptions.

Popular/Recent Combiner Types (Part 1)

Below, I am going to go through the most common beam combiner options.  I’m going to start with the simpler/older combiner technologies and work my way to the “waveguide” beam splitters of some of the newest designs in Part 2.  I’m going to try and hit on the main types, but there are many big and small variations within a type

gg-combinerSolid Beam Splitter (Google Glass and Epson BT-300)

These are often used with a polarizing beam splitter polarized when using LCOS microdisplays, but they can also be simple mirrors.  They generally are small due to weight and cost issues such as with the Google Glass at left.  Due to their small size, the user will see the blurry edges of the beam splitter in their field of view which is considered highly undesirable.  bt-300Also as seen in the Epson BT-300 picture (at right), they can make a person’s eyes look strange.  As seen with both the Google Glass and Epson, they have been used with the projector engine(s) on the sides.

Google glass has only about a 13 degree FOV (and did not support using a person’s glasses) and about 1.21 arc-minutes/pixel angular resolution with is on the small end compared to most other headset displays.    The BT-300 about 23 degree (and has enough eye relief to supports most glasses) horizontally and has dual 1280×720 pixels per eye giving it a 1.1 arc-minutes/pixel angular resolution.  Clearly these are on the low end of what people are expecting in terms of FOV and the solid beam quickly becomes too large, heavy, and expensive at the FOV grows.  Interesting they are both are on the small end of their apparent pixel size.

meta-2-combiner-02bSpherical/Semi-Spherical Large Combiner (Meta 2)

While most of the AR/MR companies today are trying to make flatter combiners to support a wide FOV with small microdisplays for each eye, Meta has gone in the opposite direction with dual very large semi-spherical combiners with a single OLED flat panel to support an “almost 90 degree FOV”. Note in the picture of the Meta 2 device that there are essentially two hemispheres integrated together with a single large OLED flat panel above.

Meta 2 uses a 2560 by 1440 pixel display that is split between two eyes.  Allowing for some overlap there will be about 1200 pixel per eye to cover 90 degrees FOV resulting in a rather chunkylarge (similar to Oculus Rift) 4.5 arc-minutes/pixel which I find somewhat poor (a high resolution display would be closer to 1 a-m/pixel).

navdy-unitThe effect of the dual spherical combiners is to act as a magnifying mirror that also move the focus point out in space so the use can focus. The amount of magnification and the apparent focus point is a function of A) the distance from the display to the combiner, B) the distance from the eye to the combiner, and C) the curvature.   I’m pretty familiar with this optical arrangement since the optical design it did at Navdy had  similarly curved combiner, but because the distance from the display to the combiner and the eye to the combiner were so much more, the curvature was less (larger radius).

I wonder if their very low angular resolution was as a result of their design choice of the the large spherical combiner and the OLED display’s available that they could use.   To get the “focus” correct they would need a smaller (more curved) radius for the combiner which also increases the magnification and thus the big chunky pixels.  In theory they could swap out the display for something with higher resolution but it would take over doubling the horizontal resolution to have a decent angular resolution.

I would also be curious how well this large of a plastic combiner will keep its shape over time. It is a coated mirror and thus any minor perturbations are double.  Additionally and strain in the plastic (and there is always stress/strain in plasic) will cause polarization effect issues, say whenlink-ahmd viewing and LCD monitor through it.   It is interesting because it is so different, although the basic idea has been around for a number of years such as by a company called Link (see picture on the right).

Overall, Meta is bucking the trend toward smaller and lighter, and I find their angular resolution disappointing The image quality based on some on-line see-through videos (see for example this video) is reasonably good but you really can’t tell angular resolution from the video clips I have seen.  I do give them big props for showing REAL/TRUE video’s through they optics.

It should be noted that their system at $949 for a development kit is about 1/3 that of Hololens and the ODG R-7 with only 720p per eye but higher than the BT-300 at $750.   So at least on a relative basis, they look to be much more cost effective, if quite a bit larger.

odg-002-cropTilted Thin Flat or Slightly Curved (ODG)

With a wide FOV tilted combiner, the microdisplay and optics are locate above in a “brow” with the plate tilted (about 45 degrees) as shown at left on an Osterhout Design Group (ODG) model R-7 with 1280 by 720 pixel microdisplays per eye.   The R-7 has about a 37 degree FOV and a comparatively OK 1.7 arc-minutes/pixel angular resolution.

odg-rr-7-eyesTilted Plate combiners have the advantage of being the simplest and least expensive way to provide a large field of view while being relatively light weight.

The biggest drawback of the plate combiner is that it takes up a lot of volume/distance in front of the eye since the plate is tilted at about 45 degrees from front to back.  As the FOV gets bigger the volume/distance required also increase.
odg-horizons-50d-fovODG is now talking about a  next model called “Horizon” (early picture at left). Note in the picture at left how the Combiner (see red dots) has become much larger. They claim to have >50 degree FOV and with a 1920 x 1080 display per eyethis works out to an angular resolution of about 1.6 arc-minutes/pixel which is comparitively good.

Their combiner is bigger than absolutely necessary for the ~50 degree FOV.  Likely this is to get the edges of the combiner farther into a person’s peripheral vision to make them less noticeable.

The combiner is still tilted but it looks like it may have some curvature to it which will tend to act as a last stage of magnification and move the focus point out a bit.   The combiner in this picture is also darker than the one in the older R-7 combiner and may have additional coatings on it.

ODG has many years of experience and has done many different designs (for example, see this presentation on Linked-In).  They certainly know about the various forms of flat optical waveguides such as Microsoft’s Hololens is using that I am going to be talking about next time.  In fact,  that Microsoft’s licensed Patent from ODG for  about $150M US — see).

Today, flat or slightly curved thin combiners like ODG is using probably the best all around technology today in terms of size, weight, cost, and perhaps most importantly image quality.   Plate combiners don’t require the optical “gymnastics” and the level of technology and precision that the flat waveguides require.

Next time — High Tech Flat Waveguides

Flat waveguides using diffraction (DOE) and/or holographic optical elements (HOE) are what many think will be the future of combiners.  They certainly are the most technically sophisticated. They promise to make the optics thinner and lighter but the question is whether they have the optical quality and yield/cost to compete yet with simpler methods like what ODG is using on the R-7 and Horizon.

Microsoft and Magic Leap each are spending literally over $1B US each and both are going with some form of flat, thin waveguides. This is a subject to itself that I plan to cover next time.