Tag Archive for Displays

ODG R-9: A Peak Behind the Video Curtain


With all the hype about Hololens and Magic Leap (ML), Osterhout Design Group (ODG) often gets overlooked. ODG has not spent as much (but still spending 10’s of millions).  ODG has many more years working in field albeit primarily in the military/industrial market.

I don’t know about all the tracking, image generation, wireless, and other features, but ODG should have the best image quality of the three (ODG, Hololens, and ML).  Their image quality was reasonably well demonstrated in a short “through the optics” video ODG made (above and below are a couple crops from frames of that video). While you can only tell so much from a YouTube video (which limits the image quality), they are not afraid to show reasonably small text and large white areas (both of which would show up problems with lesser quality displays).

Update 2016-12-26: A reader “Paul” wrote that he has seen the “cars and ball” demo live. That while the display was locked down, the cubes were movable in the demo. Paul did not know where the computing was done and it could have been done on a separate computer. So it is possible that I got the dividing line between what was “real” and preplanned a bit off. I certainly don’t think that they detected that there was a clear and a black cube, and much of the demo had to have been pre-planned/staged. Certainly it is not a demonstration of what would happen if you were wearing the headset. 

Drawn To Contradictions

As I wrote last time, I’m not a fan of marketing hyperbole and I think calling their 1080p per eye a “4K experience” is at best deliberately confusing. I also had a problem with what Jame Mackie (independent) reporter said about the section of the video starting at 2:29 with the cars and balls in it and linked to here. What I was seeing was not what he was describing.

The sequence starts with a title slide saying, “Shot through ODG smart-glasses with an iPhone 6” which I think is true as far as it what is written. But the commentary by Jame Mackie was inaccurate and misleading:

So now for a real look at how the Holograms appear, as you can see the spatial and geometric tracking is very good. What really strikes me is the accuracy and positioning.  Look how these real life objects {referring to the blocks} sit so effortlessly with the Holograms

I don’t know what ODG told the reporter or if he just made it up, but at best the description is very misleading. I don’t believe there is any tracking being done and all the image rendering  was generated off-line.

What Real Virtual Reality Looks Like

Before getting into detail on the “fake” part of the video, it is instructive to look at a “real” clip. In another part of the video there is a sequence showing replacing the tape in a label maker (starting at 3:25).

In this case, they hand-held the camera rig with the glasses. In the first picture below you can see on the phone that that they are inserting virtual a virtual object, circled in green on the phone, and missing in the “real world”. 

As the handheld rig moves around the virtual elements moves and track with the camera movement reasonably well.  There is every indication that what you are seeing is what they can actually with tracking in an image generation. The virtual elements in three clips from the video are circled in green below.

The virtual elements are in the real demonstration are simple with no lighting effects or reflections off the table. Jame Mackie in the video talks as if he actually tried this demonstrations rather than just describing what he thinks the video shows.

First Clue – Camera Locked Down

The first clue that Cars and Balls video was setup/staged video is that the camera/headset never moves. If the tracking and everything was so good, why not prove it by moving rig with the headset and camera.

Locking the camera down makes it vastly easier to match up pre-recorded/drawn material. As soon as you see the camera locked down with a headset, you should be suspicious of whether some or all of the video has been faked.

Second Clue – Black Cube Highlights Disappeared

Take a look at the black cube below showing the camera rig setup and particularly the two edges of the black cube inside the orange ovals I added. Notice the highlight on the bottom half of each edge and how it looks like the front edge of the clear plastic cube. It looks to me like the black cube was made from a clear cube with the inside colored black. 

Now look at the crop at left from the first frames showing the through the iPhone and optics view. The highlight on the clear cube is still there but strangely the highlights on the black cube have disappeared. Either they switched out the cube or the highlights were taking out in post processing. It is hard to tell because the lighting is so dim.

Third Clue – Looks Too Good – Can’t Be Real Time

2016-12-16 Update: After thinking about it some more, the rending might be in real time. They probably knew there would be a clear and black  box and rendered accordingly with simpler rendering than ray tracing. Unknown is whether the headset or another computer did the rendering. 

According to comments by “Paul” he has seen the the system running. The Headset was locked-down which is a clue that is some “cheating” going on, but he said the blocks were not in a fixed location. 

Looking “too good” is a big giveaway. The cars in the video with all their reflections were clearly using much more complex ray-tracing that was computed off-line. Look at all the reflections of the cars at left. There are both cars reflecting off the table and off the clear cube the flashing light on the police car also acts like a light source in the way it reflect off the cube.

4th Clue: How Did The Headset Know The Cube Was Clear?

One of the first things that I noticed was the clear cube. How are the cameras and sensors going to know it is clear and how it will reflect/refract light? That would be a lot of expensive sensing and processing to figure this out just to deal with this case.

5th Clue: Black Cube Misaligned

On the right is a crop from a frame where the reflection of the car is wrong. From prior frames, I have outlined the black cube with red lines. But the yellow care is visible when it should be hidden by the black cube. There also a reflection in the side of the cube around where the render image is expecting the black cube to be (orange line shows the reflection point).

How It Was Done

2016-12-26 Updates (in blue): Based on the available evidence, the video is uses some amount of misdirection. The video was pre-rendered using a ray tracing computer model with a clear cube and a perfect black shiny cube on a shiny black table being modeled.  They knew that a clear and black cube would be in the scene and locked down the camera. They may have use the sensors to detect where the blocks are to know how to rendering the image. 

They either didn’t have the sensing and tracking ability or the the rendering ability to allow the camera to move.

Likely the grids you see in the video are NOT the headset detecting the scene but exactly the opposite; they are guides to the person setting up the “live” shot as to where to place the real cubes to match where they where in the model. They got the black cube in slightly the wrong place.

The final video was shot through the optics, but the cars and balls where running around the a clear and black cubes assuming they would be there when the video was rendered. No tracking, surface detection, or complex rendering was required, just the ability to playback a pre-recorded video.


I’m not trying to pick on ODG. Their hype so far less than what I have seen from Hololens and Magic Leap.  I don’t mind companies “simulating” what images will look like provided they indicate they are simulated effects. I certainly understand that through the optics videos and pictures will not look as good as simulated images. But when they jump back and forth between real and simulated effects and other tricks, you start to wonder what is “real.”

ODG R-9 (Horizon): 1080p Per Eye, Yes Really

Lazy Reporting – The Marketing Hyperbole’s Friend

While I have not ODG’s R-9 in person yet, I fully expect that it will look a lot better than Microsoft’s Hololens. I even think it will look better in terms of image quality than what I think ML is working on. But that is not the key point of this article.

But there is also a layer of marketing hyperbole and misreporting going on that I wanted to clear up. I’m just playing referee hear and calling it like a see them.

ODG 4K “Experience” with 2K (1080p) Per Eye

2016-12-28 Update – It appears I was a bit behind on the marketing hype vernacular being used in VR. Most VR displays today, such as Oculus, take a single flat panel and split it between two eyes. So each eye sees less than half (some pixels are cut off) of the pixels. Since bigger is better in marketing, VR makers like to quote the whole flat panel size and not the resolution per eye. 

ODG “marketing problem” is that historically a person working with near eye displays would talk in in terms of “resolution per eye” but this would not be as big by 2X as the flat panel based VR companies market. Rather than being at a marketing hype disadvantage, ODG apparently has adopted the VR flat panel vernacular, however misleading it might be. 

I have not met Jame Mackie nor have I watched a lot of his videos, but he obviously does not understand display technology well and I would take anything he says about video quality with a grain of salt. If should have understood that ODG’s R-9 has is not “4K” as in the title of his YouTube video: ODG 4K Augmented Reality Review, better than HoloLens ?. And specifically he should of asked questions when the ODG employee stated at about 2:22, “it’s two 1080p displays to each eye, so it is offering a 4K experience.

What the ODG marketing person was I think trying to say was that somehow having 1080p (also known as 2K) for each eye was like having a 2 times 2K or “4K equivalent” it is not. In stumbling to try and make the “4K equivalent” statement, the ODG person simply tripped over his own tongue to and said that there were two 1080p devices per eye, when he meant to say there were two 1080p devices in the glasses (one per eye). Unfortunately Jame Mackie didn’t know the difference and did not realize that this would have been impossible in the R-9’s form factor and didn’t follow up with a question. So the  false information got copied into the title of the video and was left as if it was true.

VRMA’s Micah Blumberg Asks The Right Questions and Get The Right Answer – 1080p Per Eye

This can be cleared up in the following video interview with Nima Shams, ODG’s VP of Headworn: “Project Horizon” AR VR Headset by VRMA Virtual Reality Media“. When asked by Micah Blumberg starting at about 3:50 into the video, “So this is the 4K headset” to which Nima Sham responds, “so it is 1080p to each eye” to which Blumberg astutely makes sure to clarify with, “so we’re seeing 1080p right now and not 4K” to which Nima Sham responds, “okay, yeah, you are seeing 2K to each eye independently“.  And they even added an overlay in the video “confirmed 2K per eye.” (see inside the read circle I added).

A Single 1080p OLED Microdisplay Per Eye

Even with “only” 1080p OLED microdisplay per eye with a simple optical path the ODG R-9 should have superior image quality compared to Hololens:

  1. OLEDs should give better contrast than Hololens’ Himax LCOS device
  2. There will be no field sequential color breakup with head or image movment as there can be with Hololens
  3. They have about the same pixels per arc-minute at Hololens but with more pixels they increase FOV from about 37 degrees to about 50 degrees.
  4. Using a simple plate combiner rather than the torturous path of Hololens’ waveguide, I would expect the pixels to be sharper and with little visible chroma aberrations and no “waveguide glow” (out of focus light around bright objects). So even though the angular resolution of the two is roughly the same, I would expect the R-9 to look sharper/higher resolution.

The known downsides compared to Hololens:

  1. The ODG R-9 does not appear to have enough “eye relief” to support wearing glasses.
  2. The device puts a lot of weight on the nose and ears of the user.

I’m not clear about the level of tracking but ODG’s R-9 does not appear to have the number of cameras and sensors that Hololens has for mapping/locking the real world. We will have to wait and see for more testing on this issue. I also don’t have information on how comparable the level of image and other processing is done by the ODG relative to Horizon.


Micah Blumberg showed the difference between just repeating what he is told and knowing enough to ask the right followup question. He knew that ODG had a 4K marketing message was confusing and that what he was being told was at odds with what he was being told so he made sure to clarify it. Unfortunately while James Makie got the “scoop” on the R-9 being the product name for Horizon, he totally misreported the resolution and other things in his report (more on that later).

Lazy and ill informed reporters are the friend and amplifier of marketing hyperbole. It appears that ODG is trying to equate dual 1080p displays per eye with being something like “4K” which is really is not. You need 1080p (also known as 2K) per eye to do stereo 1080p, but that is not the same as “4K” which which is defined as 3840×2060 resolution or 4 times the spatial resolution of 1080p. Beyond this, qualifiers of like “4K “Experience” which has no real meaning are easily dropped and ill informed reporters will report it as “4K” which does have a real meaning.

Also, my point is not meant to pick on ODG, they just happen to be the case at hand. Unfortunately, most of the display market is “liars poker.” Companies are fudging on display specs all the time. I rarely see a projector that meets or exceeds it “spec” lumens. Resolutions are often spec’ed in misleading ways (such as specifying the input rather than the “native” resolution). Contrast is another place were “creative marketing” is heavily used. The problem is that because “everyone is doing it” people feel they have to just to keep up.

The problem for me comes when I have to deal with people that have read false or misleading information. It gets hard to separate truth from marketing exaggeration.

This also goes back to why I didn’t put much stock in the magazine reports about Magic Leap looked. These reports were made by people that were easy to impress and likely not knowledgeable about display devices. They probably could not tell the display resolution by 2X in each direction or would notice even moderately severe image problems. If they were shown a flashy looking demo they would assume it was high resolution.

One More Thing – Misleading/Fake “True Video”

It will take a while to explain (maybe next time), I believe the James Makie video also falsely indicates at 2:29 in the video (the part with the cars and the metal balls on the table), that what is being shown is how the ODG R-9 works.

In fact, while the images of the cars and balls are generated by the R-9, there tracking of the real world and the reflections off the surfaces are a well orchestrated FAKE. Basically they were playing a pre-rendered video though the glasses (so that part is likely real). But clear and black boxes on the table where props there to “sell the viewer” that this was being rendered on the fly.  There also appears to be some post-processing in the video. Most notably, it looks like the black box was modified in post production. There are several clues in the video that will take a while to explain.

To be fair to ODG, the video does not claim to not be fake/processed, but the way it is presented within Jame Makie’s video is extremely misleading to say the least. It could be that the video was taken out of context.

For the record, I do believe the video starting at 4:02 which I have analyze before is a genuine through the optics video and is correctly so identified on the video. I’m not sure about the “tape replacement” video at 3:23, I think it may be genuine or it could be some cleaver orchestrating.

Kopin Entering OLED Microdisplay Market

Kopin Making OLED Microdisplays

Kopin announced today that they are getting into the OLED Microdisplay business. This is particularly notable because Kopin has been a long time (since 1999) manufacture of transmissive LCD microdisplays used in camera viewfinders and near eye display devices. They also bought Forth Dimension Displays back in 2011, a maker of high resolution ferroelectric reflective LCOS used in higher end near eye products.

OLED Microdisplays Trending in AR/VR Market

With the rare exception of the large and bulky Meta 2, microdisplays, (LCOS, DLP, OLED, and transmissive LCD), dominate the AR/MR see-through market. They also are a significant factor in VR and other non-see-through near eye displays

Kopins entry seems to be part of what may be a trend toward OLED Microdisplays used in near eye products. ODG’s next generation “Horizon” AR glasses is switching from LCOS (used in the current R7) to OLED microdisplays. Epson which was a direct competitor to Kopin in transmissive LCD, switched to OLED microdisplays in their new Moverio BT-300 AR glasses announced back in February.

OLED Microdisplays Could Make VR and Non-See-Through Headsets Smaller/Lighter

Today most of the VR headsets are following Oculus’s use of large flat panels with simple optics. This leads to large bulky headsets, but the cost of OLED and LCD flat panels is so low compared to other microdisplays with their optics that they win out. OLED microdisplays have been far too expensive to compete on price with the larger flat panels, but this could change as there are more entrants into the OLED microdisplay market.

OLEDs Don’t Work With Waveguides As Used By Hololens and Magic Leap

It should be noted that the broad spectrum and diffuse light emitted by OLED is generally incompatible with the flat waveguide optics such as used by Hololens and is expected from Magic Leap (ML). So don’t expect to see these being used by Hololens and ML anytime soon unless they radically redesign their optics. Illuminated microdisplays like DLP and LCOS can be illuminated by narrower spectrum light sources such as LED and even lasers and the light can be highly collimated by the illumination optics.

Transmissive LCD Microdisplays Can’t Compete As Resolution Increases

If anything, this announcement from Kopin is the last nail in the coffin of the transmissive LCD microdisplay in the future. OLED Microdisplays have the advantages over transmissive Micro-LCD in the ability to go to higher resolution and smaller pixels to keep the overall display size down for a given resolution when compared to transmissive LCD. OLEDs consume less power for the same brightness than transmissive LCD. OLED also have much better contrast. As resolution increases transmissive LCDs cannot compete.

OLEDs Microdisplays More Of A Mixed Set of Pros and Cons Compared to LCOS and DLP.

There is a mix of pro’s and con’s when comparing OLED microdisplays with LCOS and DLP. The Pro’s for OLED over LCOS and DLP include:

  1. Significantly simpler optical path (illumination path not in the way). Enables optical solutions not possible with reflective microdisplays
  2. Lower power for a given brightness
  3. Separate RGB subpixels so there is no field sequential color breakup
  4. Higher contrast.

The advantages for LCOS and DLP reflective technologies over OLED microdisplays include:

  1. Smaller pixel equals a smaller display for a given resoluion. DLP and LCOS pixels are typically from 2 to 10 times smaller in area per pixel.
  2. Ability to use narrow band light sources which enable the use of waveguides (flat optical combiners).
  3. Higher brightness
  4. Longer lifetime
  5. Lower cost even including the extra optics and illumination

Up until recently, the cost of OLED microdisplays were so high that only defense contractors and other applications that could afford the high cost could consider them. But that seems to be changing. Also historically the brightness and lifetimes of OLED microdisplays were limited. But companies are making progress.

OLED Microdisplay Competition

Kopin is long from being the first and certainly is not the biggest entry in the OLED microdisplay market. But Kopin does have a history of selling volume into the microdisplay market. The list of known competitors includes:

  1. Sony appears to be the biggest player. They have been building OLED microdisplays for many years for use in camera viewfinders. They are starting to bring higher resolution products to the market and bring the costs down.
  2. eMagin is a 23-year-old “startup”. They have a lot of base technology and are a “pure play” stock wise. But they have failed to break through and are in danger of being outrun by big companies
  3. MicoOLED – Small France startup – not sure where they really stand.
  4. Samsung – nothing announced but they have all the technology necessary to make them. Update: Ron Mertens of OLED-Info.com informed me that I was rumored that the second generation of Google Glass was considering a Samsung OLED microdisplay and that Samsung had presented a paper going back to 2011.
  5.  LG – nothing announced but they have all the technology necessary to make them.

I included Samsung and LG above not because I have seen or heard of them working on them, but I would be amazed if they didn’t at least have a significant R&D effort given their sets of expertise and their extreme interest in this market.

For More Information:

For more complete information on the OLED microdisplay market, you might want go to OLED-info that has been following both large flat panel and small OLED microdisplay devices for many years. They also have two reports available, OLED Microdisplays Market Report and OLED for VR and AR Market Report.

For those who want to know more about Kopin’s manufacturing plan, Chris Chinnock of Insight Media has an interesting article outlining Kopin’s fabless development strategy.

AR/MR Optics for Combining Light for a See-Through Display (Part 1)

combiners-sample-cropIn general, people find the combining of an image with the real world somewhat magical; we see this with heads up displays (HUDs) as well as Augmented/Mixed Reality (AR/MR) headsets.   Unlike Starwars R2D2 projection into thin air which was pure movie magic (i.e. fake/impossible), light rays need something to bounce off to redirect them into a person’s eye from the image source.  We call this optical device that combines the computer image with the real world a “combiner.”

In effect, a combiner works like a partial mirror.  It reflects or redirects the display light to the eye while letting light through from the real world.  This is not, repeat not, a hologram which it is being mistakenly called by several companies today.  Over 99% people think or call “holograms” today are not, but rather simple optical combining (also known as the Pepper’s Ghost effect).

I’m only going to cover a few of the more popular/newer/more-interesting combiner examples.  For a more complete and more technical survey, I would highly recommend a presentation by Kessler Optics. My goal here is not to make anyone an optics expert but rather to gain insight into what companies are doing why.

With headsets, the display device(s) is too near for the human eye to focus and there are other issues such as making a big enough “pupil/eyebox” so the alignment of the display to the eye is not overly critical. With one exception (the Meta 2) there are separate optics  that move apparent focus point out (usually they try to put it in a person’s “far” vision as this is more comfortable when mixing with the real word”.  In the case of Magic Leap, they appear to be taking the focus issue to a new level with “light fields” that I plan to discuss the next article.

With combiners there is both the effect you want, i.e. redirecting the computer image into the person’s eye, with the potentially undesirable effects the combiner will cause in seeing through it to the real world.  A partial list of the issues includes:

  1. Dimming
  2. Distortion
  3. Double/ghost images
  4. Diffraction effects of color separation and blurring
  5. Seeing the edge of the combiner

In addition to the optical issues, the combiner adds weight, cost, and size.  Then there are aesthetic issues, particularly how they make the user’s eye look/or if they affect how others see the user’s eyes; humans are very sensitive to how other people’s eye look (see the EPSON BT-300 below as an example).

FOV and Combiner Size

There is a lot of desire to support a wide Field Of View (FOV) and for combiners a wide FOV means the combiner has to be big.  The wider the FOV and the farther the combiner is from the eye the bigger the combiner has to get (there is not way around this fact, it is a matter of physics).   One way companies “cheat” is to not support a person wearing their glasses at all (like Google Glass did).

The simple (not taking everything into effect) equation (in excel) to computer the minimum width of a combiner is =2*TAN(RADIANS(A1/2))*B1 where A1 is the FOV in degrees and and B1 is the distance to farthest part combiner.  Glasses are typically about 0.6 to 0.8 inches from the eye and the size of the glasses and the frames you want about 1.2 inches or more of eye relief. For a 40 degree wide FOV at 1.2 inches this translates to 0.9″, at 60 degrees 1.4″ and for 100 degrees it is 2.9″ which starts becoming impractical (typical lenses on glasses are about 2″ wide).

For, very wide FOV displays (over 100 degree), the combiner has to be so near your eye that supporting glasses becomes impossible. The formula above will let your try your own assumptions.

Popular/Recent Combiner Types (Part 1)

Below, I am going to go through the most common beam combiner options.  I’m going to start with the simpler/older combiner technologies and work my way to the “waveguide” beam splitters of some of the newest designs in Part 2.  I’m going to try and hit on the main types, but there are many big and small variations within a type

gg-combinerSolid Beam Splitter (Google Glass and Epson BT-300)

These are often used with a polarizing beam splitter polarized when using LCOS microdisplays, but they can also be simple mirrors.  They generally are small due to weight and cost issues such as with the Google Glass at left.  Due to their small size, the user will see the blurry edges of the beam splitter in their field of view which is considered highly undesirable.  bt-300Also as seen in the Epson BT-300 picture (at right), they can make a person’s eyes look strange.  As seen with both the Google Glass and Epson, they have been used with the projector engine(s) on the sides.

Google glass has only about a 13 degree FOV (and did not support using a person’s glasses) and about 1.21 arc-minutes/pixel angular resolution with is on the small end compared to most other headset displays.    The BT-300 about 23 degree (and has enough eye relief to supports most glasses) horizontally and has dual 1280×720 pixels per eye giving it a 1.1 arc-minutes/pixel angular resolution.  Clearly these are on the low end of what people are expecting in terms of FOV and the solid beam quickly becomes too large, heavy, and expensive at the FOV grows.  Interesting they are both are on the small end of their apparent pixel size.

meta-2-combiner-02bSpherical/Semi-Spherical Large Combiner (Meta 2)

While most of the AR/MR companies today are trying to make flatter combiners to support a wide FOV with small microdisplays for each eye, Meta has gone in the opposite direction with dual very large semi-spherical combiners with a single OLED flat panel to support an “almost 90 degree FOV”. Note in the picture of the Meta 2 device that there are essentially two hemispheres integrated together with a single large OLED flat panel above.

Meta 2 uses a 2560 by 1440 pixel display that is split between two eyes.  Allowing for some overlap there will be about 1200 pixel per eye to cover 90 degrees FOV resulting in a rather chunkylarge (similar to Oculus Rift) 4.5 arc-minutes/pixel which I find somewhat poor (a high resolution display would be closer to 1 a-m/pixel).

navdy-unitThe effect of the dual spherical combiners is to act as a magnifying mirror that also move the focus point out in space so the use can focus. The amount of magnification and the apparent focus point is a function of A) the distance from the display to the combiner, B) the distance from the eye to the combiner, and C) the curvature.   I’m pretty familiar with this optical arrangement since the optical design it did at Navdy had  similarly curved combiner, but because the distance from the display to the combiner and the eye to the combiner were so much more, the curvature was less (larger radius).

I wonder if their very low angular resolution was as a result of their design choice of the the large spherical combiner and the OLED display’s available that they could use.   To get the “focus” correct they would need a smaller (more curved) radius for the combiner which also increases the magnification and thus the big chunky pixels.  In theory they could swap out the display for something with higher resolution but it would take over doubling the horizontal resolution to have a decent angular resolution.

I would also be curious how well this large of a plastic combiner will keep its shape over time. It is a coated mirror and thus any minor perturbations are double.  Additionally and strain in the plastic (and there is always stress/strain in plasic) will cause polarization effect issues, say whenlink-ahmd viewing and LCD monitor through it.   It is interesting because it is so different, although the basic idea has been around for a number of years such as by a company called Link (see picture on the right).

Overall, Meta is bucking the trend toward smaller and lighter, and I find their angular resolution disappointing The image quality based on some on-line see-through videos (see for example this video) is reasonably good but you really can’t tell angular resolution from the video clips I have seen.  I do give them big props for showing REAL/TRUE video’s through they optics.

It should be noted that their system at $949 for a development kit is about 1/3 that of Hololens and the ODG R-7 with only 720p per eye but higher than the BT-300 at $750.   So at least on a relative basis, they look to be much more cost effective, if quite a bit larger.

odg-002-cropTilted Thin Flat or Slightly Curved (ODG)

With a wide FOV tilted combiner, the microdisplay and optics are locate above in a “brow” with the plate tilted (about 45 degrees) as shown at left on an Osterhout Design Group (ODG) model R-7 with 1280 by 720 pixel microdisplays per eye.   The R-7 has about a 37 degree FOV and a comparatively OK 1.7 arc-minutes/pixel angular resolution.

odg-rr-7-eyesTilted Plate combiners have the advantage of being the simplest and least expensive way to provide a large field of view while being relatively light weight.

The biggest drawback of the plate combiner is that it takes up a lot of volume/distance in front of the eye since the plate is tilted at about 45 degrees from front to back.  As the FOV gets bigger the volume/distance required also increase.
odg-horizons-50d-fovODG is now talking about a  next model called “Horizon” (early picture at left). Note in the picture at left how the Combiner (see red dots) has become much larger. They claim to have >50 degree FOV and with a 1920 x 1080 display per eyethis works out to an angular resolution of about 1.6 arc-minutes/pixel which is comparitively good.

Their combiner is bigger than absolutely necessary for the ~50 degree FOV.  Likely this is to get the edges of the combiner farther into a person’s peripheral vision to make them less noticeable.

The combiner is still tilted but it looks like it may have some curvature to it which will tend to act as a last stage of magnification and move the focus point out a bit.   The combiner in this picture is also darker than the one in the older R-7 combiner and may have additional coatings on it.

ODG has many years of experience and has done many different designs (for example, see this presentation on Linked-In).  They certainly know about the various forms of flat optical waveguides such as Microsoft’s Hololens is using that I am going to be talking about next time.  In fact,  that Microsoft’s licensed Patent from ODG for  about $150M US — see).

Today, flat or slightly curved thin combiners like ODG is using probably the best all around technology today in terms of size, weight, cost, and perhaps most importantly image quality.   Plate combiners don’t require the optical “gymnastics” and the level of technology and precision that the flat waveguides require.

Next time — High Tech Flat Waveguides

Flat waveguides using diffraction (DOE) and/or holographic optical elements (HOE) are what many think will be the future of combiners.  They certainly are the most technically sophisticated. They promise to make the optics thinner and lighter but the question is whether they have the optical quality and yield/cost to compete yet with simpler methods like what ODG is using on the R-7 and Horizon.

Microsoft and Magic Leap each are spending literally over $1B US each and both are going with some form of flat, thin waveguides. This is a subject to itself that I plan to cover next time.