Tag Archive for Disney

Mira Prism and Dreamworld AR – (What Disney Should Have Done?)

That Was Fast – Two “Bug-Eye” Headsets

A few days ago  I published a story on the Disney Lenovo Optics and wondered why they didn’t use a much simpler “bug-eye” combiner optics similar to the Meta-2 (below right) which currently sells in a development kit version for $949. It turns out the very same day Mira announced their Prism Headset which is a totally passive headset with a mount for a phone and bug-eye combiners with a “presale price” of $99 (proposed retail $150). Furthermore in looking into what Mira was doing, I discovered that back on May 9th, 2017, DreamWorld announced their “DreamGlass” headset using bug-eye combiners that also includes tracking electronics which is supposed to cost “under $350” (see the Appendix for a note on a lawsuit between DreamWorld and Meta)

The way both of these work (Mira’s is shown on the left) is that the cell phone produces two small images, one for each eye, that reflects off the two curved semi-mirror combiners that are joined together. The combiners reflect part of the phone’s the light and move the focus of the image out in space (because otherwise human could not focus so close).

Real or Not?: Yes Mira, Not Yet Dreamworld

Mira has definitely built production quality headsets as there are multiple reports of people trying them on and independent pictures of the headset which looks to be near to if not a finished product.

DreamWorld has not demonstrated, at least as of their May 9th announcement, have a fully functional prototype per Upload’s article. What may appear to be “pictures” of the headset are 3-D renderings. Quoting Upload:

“Dreamworld’s inaugural AR headset is being called the Dreamworld Glass. UploadVR recently had the chance to try it out at the company’s offices but we were not allowed to take photos, nor did representatives provide us with photographs of the unit for this story.

The Glass we demoed came in two form factors. The first was a smaller, lighter model that was used primarily to show off the headset’s large field of view and basic head tracking. The second was significantly larger and was outfitted with “over the counter” depth sensors and cameras to achieve basic positional tracking. “

The bottom line here is that Mira’s appear near ready to ship whereas DreamWorld still has a lot of work left to do and at this point is more of a concept than a product.

DreamWorlds “Shot Directly From DreamWorld’s AR Glass” videos were shot through a combiner, but it may or may not be through their production combiner configured with the phone in the same place as the production design.

I believe views shown in the Mira videos are real, but they are, of course, shooting separately the people in the videos wearing the heaset and what the image look’s like through the headset. I will get into one significant problem I found with Mira’s videos/design later (see “Mira Prism’s Mechanical Interference” section below).

DreamWorld Versus Mira Optical Comparison

While both DreamWorld and Mira have similar optical designs, on closer inspection it is clear that there is a very different angle between the cell phone display and the combiners (see left). DreamWorld has the combiner nearly perpendicular to the combiner whereas Mira has the cell phone display nearly parallel. This difference in angle means that there will be more inherent optical distortion in the DreamWorld design whereas the Mira design has the phone more in the way of the person’s vision, particularly if they wear glasses (once again, see “Mira Prism’s Mechanical Interference” section below).

See-Through Trade-offs of AR

Almost all see-though designs waste most light of the display in combining the image with the real world light.  Most designs lose 80% to 95% (sometimes more) of the display’s light. This in turn means you want to start with a display 20 to as much as 100 times (for outdoor use) the brightness of a cell phone. So even an “efficient” optical design has serious brightness problems starting with a cell phone display (sorry this is just a fact). There are some tricks to avoid these losses but not if you are starting with the light from a cell phone’s display (broad spectrum and very diffuse).

One thing I was very critical of last time of the Disney-Lenova headset was that it appeared to be blocking about 75 to 80% of the ambient/real-world light which is equivalent to dark sunglasses. I don’t think any reasonable person would find blocking this much light to be acceptable for something claiming to be “see-through” display.

From several pictures I have of Mira’s prototype, I very roughly calculated that they are about 70% transparent (light to medium dark sunglasses) which means they in turn are throwing away 70+% of the cell phone’s light. On of the images from from Mira’s videos is shown below. I have outlined with a dashed line the approximate active FOV (the picture cuts it off on the bottom) which Mira claims to cover about 60 degees and you can see the edge of the combiner lens (indicated by the arrows).

What is important to notice is that the images are somewhat faded and don’t not “dominate”/block-out the real world. This appears true of all the through optics images in Mira’s videos. The room while not dark is also not overly brightly lit. This is going to be a problem for any AR device using a cell phone as its display. With AR optics you are both going to throw away a lot of the displays light to support seeing through to the real world and you have to compete with the light that is in the real world. You could turn the room lights out and/or look at black walls and tables, but then what is the point of being “see through.”

I also captured a through the optics image from DreamWorld’s DreamGlass video (below). The first thing that jumps out at me is how dark the room looks and that they have a very dark table. So while the images may look more “solid” than in the Mira video, most of this is due to the lighting of the room

Because the DreamWorld background is darker, we can also see some of the optical issues with the design. In particular you should notice the “glow” around the various large objects (indicated by red arrows). There is also a bit of a double image of the word “home” (indicated by the green arrow). I don’t have an equivalent dark scene from Mira so I can’t tell if they have similar issues.

Mira Prism’s Resolution

Mira (only) supports the iPhone 6/6s/7 size display and not the larger “Plus” iPhones which won’t fit. This gives them 1334 by 750 pixels to start with. The horizontal resolution first has to be split in half and then about 20% of the center is used to separate the two images and center the left and right views with respect to the person’s eye (this roughly 20% gap can be seen in Mira’s Video). This nets about (1334/2) X 80% = ~534 pixels horizontally. Vertically they may have slightly higher resolution of about 600 pixels.

Mira claims a FOV of “60 Degrees” and generally when a company does not specify the whether it is horizontal, vertical, or diagonal, they mean diagonal because it is the bigger number. This would suggest that the horizontal FOV is about 40 and the vertical is about 45 degrees. This nets to a rather chunky 4.5 arcminutes/pixel (about the same as Oculus Rift CV1 but with a narrower FOV). The “screen door effect” of seeing the boundaries between pixels is evident in Mira’s videos and should be noticeable when wearing.

I’m not sure that supporting a bigger iPhone, as in the Plus size models would help. This design requires that the left and right images be centered over the which limits where the pixels in the display can be located. Additionally, a larger phone would cause more mechanical interference issues (such as with glasses covered in the next section).

Mira Prism’s Mechanical Interference

A big problem with a simple bug-eye combiner design is the location of the display device. For the best image quality you want the phone right in front of the eye and as parallel as possible to the combiners. You can’t see through the phone so they have to move it above the eye and tilt it from parallel. The more they move the phone up and tilt it, the more it will distort the image.

If you look at upper right (“A”) still frame form Mira’s video below  you will see that the phone his just slightly above the eyes. The bottom of the phone holder is touching the top of the person’s glasses (large arrow in frame A). The video suggest (see frames “B” and “C”) that the person is looking down at something in their hand. But as indicated by the red sight line I have drawn in frames A and B the person would have to be looking largely below the combiner and thus the image would at best be cut-off (and not look like the image in frame C).

In fact, for the person with glasses in the video to see the whole image they would have to be looking up as indicated by the blue sight lines in frames A and B above. The still frame “D” shows how a person would look through the headset when not wearing glasses.

I can’t say whether this would be a problem for all types of glasses and head-shapes, but it is certainly a problem that is demonstrated in the Mira’s own video.

Mira’s design maybe a bit too simple. I don’t see any adjustments other than the head band size. I don’t see any way work around say running into a person’s glasses as happens above.

Cost To Build Mira’s Prism

Mira’s design is very simple. The combiner technology is well known and can be sourced readily. Theoretically, Mira’s Prism should cost about the same to make as a number of so called “HUD” displays that use a cell phone as the display device and a (single) curved combiner that sell for between $20 and $50 (example on right). BTW, these “HUD” are useless in the daylight as a cell phone is just not bright enough. Mira needs to have a bit more complex combiner and hopefully of better quality than some of the so-called “HUDs” so $99 is not totally out of line, but they should be able to make them at a profit for $99.

Conclusions On Simple Bug-Eye Combiner Optics With A Phone

First let me say I have discussed Mira’s Prism more than DreamWord’s DreamGlass above because there is frankly more solid information on the Prism. DreamGlass seems to be more of a concept without tangible information.

The Mira headset is about as simple and inexpensive as one could make an AR see-through headset assuming you can use a person’s smartphone. It does the minimum enabling a person to focus on a phone that is so close and combining with the real world. Compared to say Disney-Lenovo birdbath, it is going to make both the display and real world both more than 2X brighter. As Mira’s videos demonstrate, the images are still going to be ghostly and not very solid unless the room and/or background is pretty dark.

Simplicity has its downsides. The resolution is  low, image is going to be a bit distorted (which can be corrected somewhat by software at the expense of some resolution). The current design appears to mechanical interference problems with wearing glasses. Its not clear if the design can be adapted to accommodate glasses as it would seem to move the whole optical design around and might necessitate a bigger headset and combiners.  Fundamentally a phone is not bright enough to support a good see-through display in even moderately lit environments.

I don’t mean to be overly critical of Mira’s Prism as I think it is an interesting low cost entry product, sort of the “Google Cardboard” of AR (It certainly makes more sense than the Disney_Lenovo headset that was just announced). I would think a lot of people would want to play around with the Mira Prism and find uses for it at the $99 price point. I would expect to see others copying its basic design. Still, the Mira Prism demonstrates many of the issues with making a low cost see-though design.

DreamWorld’s DreamGlass on the surface makes much less sense to me. It should have all the optical limitations of the much less expensive Mira Prism. It it adding at lot of cost on top of a very limited display foundation using a smartphones display.

Appendix

Some History of Bug-Eye Optics

It should be noted that what I refer to as bug-eye combiners optics is an old concept. Per the picture on the left taken from a 2005 Links/L3 paper, the concept goes back to at least 1988 using two CRTs as the displays. This paper includes a very interesting chart plotting the history of Link/L3 headsets (see below). Links legacy goes all the way back to airplane training simulators (famously used in World War II).

A major point of L3/Link’s later designs,  is that they used corrective optics between the display and the combiner to correct for the distortion cause by the off-axis relationship between the display and the combiner.

Meta and DreamWorld Lawsuit

The basic concept of dual large combiners in a headset obviously and old idea (see above), but apparently Meta thinks that DreamWorld may have borrowed without asking a bit too much from the Meta-2. As reported in TechCrunch, “The lawsuit alleges that Zhong [Meta’s former Senior Optical Engineer] “shamelessly leveraged” his time at the company to “misappropriate confidential and trade secret information relating to Meta’s technologies”.

Addendum

Holokit AR

Aryzon AR

There are at least two other contenders for the title of “Google Cardboard of AR.” Namely the Aryzon and Holokit which both separate the job of the combiner from the focusing. Both put a Fresnel lens in between the phone and a flat semitransparent combiner. These designs are one step simpler/cheaper (and use cardboard for the structure) than Mira’s design, but are more bulky with the phone hanging out. An advantage of these designs is that everything is “on-axis” which means lower distortion, but they have chromatic aberrations (color separation) issues with the inexpensive Fresnel lenses that the Mira’s mirror design won’t have. There also be some Fresnel lens artifact issues with these designs.

Disney-Lenovo AR Headset – (Part 1 Optics)

Disney Announced Joint AR Development At D23

Disney at their D23 Fan Convention in Anaheim on July 15th, 2017 announced an Augmented Reality (AR) Headset jointly developed with Lenovo. Below is a crop and brightness enhanced still frame capture from Disney’s “Teaser” video.

Disney/Lenovo also released a video from a interview a the D23 convention which gave further details. As the interview showed (see right), the device is based on using a person’s cell phone as the display (similar to Google cardboard and Samsung’s Gear for VR).

Birdbath Optics

Based on analyzing the two videos plus some knowledge of optical systems, it is possible to figure out what they are doing in terms of the optical system. Below is a diagram of what I see them as doing  in terms of optics (you may want to open this in a separate widow to view this figure in the discussion below).

All the visual evidence indicates that Disney/Lenovo  using a classical “birdbath” optical design (discussed in an article on March 03, 2017). The name “birdbath” comes from the used of a spherical semi-mirror with a beam splitter directing light into the mirror. Birdbath optics are used because they are relatively inexpensive, lightweight, support a wide field of view (FOV), and are “on axis” for minimal distortion and focusing issues.

The key element of the birdbath is the curve mirror which is (usually) the only “power” (focus changing) element. The beauty of mirror optics is that they have essentially zero chromatic aberrations whereas is is difficult/expensive to reduce chromatic aberrations with lens optics.

The big drawbacks of birdbath optics include that they block a lot of light both from the display device and the real world and double images from unwanted reflections of “waste” light. Both these negative effects can be seen in the videos.

There would be no practical way (that I know of) to support a see-though display with a cell phone sized display using refractory (lens) optics such as used with Google Cardboard or the Oculus Rift. The only practical ways I know for supporting AR/see-through display using a cell phone size display all use curved combiner/mirrors..

Major Components

Beam Splitter – The design uses a roughly 50/50 semi-mirror beam splitter which has a coating (typically aluminum alloy although it is often called “silver”) that lets about 50 percent of the light through while acting like a mirror for 50% of the light. Polarizing beam splitters would be problematic with using most phones and are much more expensive. You should note that the beam splitter is arranged to kick the image from the phone toward the curved combiner and away from the person’s eyes; thus light from the display is reflected and then has a transmissive pass.

Combiner – The combiner, a spherical semi-mirror is the key to the optics and multiple things. The combiner appears to also be about 50-50 transmissive-mirror. The curved mirror’s first job is to all the user for focus on the phones display which otherwise would be too close to a person’s eyes to support comfortable focusing. The other job of the combiner is to combine the light/image from the “real world” with the display light; it does this with the semi-mirror allowing light from the image to reflect and light from the real world be be directed toward the eye. The curve mirror only has a signification optical power (focus) effect on the reflected display light and very little distortion of the real world.

Clear Protective Shield

As best I can tell from the two videos, the shield is pretty much clear and serves no function other than to protect the rest of the optics.

Light Baffles Between Display Images

One thing seen in the picture at top are some back stepped light baffles to keep light cross-talk down between the eye.

Light Loss (Follow the Red Path)

A huge downside of the birdbath design is the light loss as illustrated in the diagram by the red arrow path where the thickness of the arrows are roughly to scale with the relative amount of light. To keep things simple, I have assumed no other losses (there are typically 2% to 4% per surface).

Starting with 100% of the light leaving the phone display, about 50% of goes through the beam splitter and is lost while the other 50% is reflected to the combiner. The combiner is also about 50% mirrored (a rough assumption), and thus 25% (0.5 X 0.5) of the display’s light has its focus changed and reflected back toward the beam splitter. About 25% of the light also goes through the combiner and causes the image you can see in the picture on the left. The beam splitter in turn allows 50% of the 25% or only about 12.5% of the light to pass toward the eye. Allowing for some practical losses, less than 10% of the light from the phone makes it to the eye.

Double Images and Contrast Loss (Follow the Green Dash Path)

Another major problem with the birdbath optics is that the lost light will bounce around and cause double images and losses in contrast. If you follow the green path, like the red path about 50% of the light will be reflected and 50% will pass through the beamsplitter (not shown on the green path). Unfortunately, a small percentage of the light that is supposed to pass through will be reflected by the glass/plastic to air interface as it tries to exit the beamsplitter as indicated by the green and red dashed lines (part of the red dashed line is obscured). This dashed path will end up causing a faint/ghost image that is offset by thickness of the beamsplitter tilted at 45 degrees. Depending on coatings, this ghost image could be from 1% to 5% of the brightness of the original image.

The image on the left is a crop from a still frame from the video Disney showed at the D23 conference with red arrows I added pointing to double/ghost images (click here for the uncropped image). The demo Disney gave was on a light background and these double images would be even more noticeable on a dark background. These same type of vertically offset double image could be seen in the Osterhaut Design Group (ODG) R8 and R9 headsets that also use a birdbath optical path (see figure on the right).

A general problem with the birdbath design is that there is so much light that is “rattling around” in an optical wedge formed by the display surface (in this case the phone), beamsplitter, and combiner mirror. Noted in the diagram that about 12.5% of the light returning from the combiner mirror reflected off the beam splitter is heading back toward the phone. This light is eventually going to hit the front glass of the phone and while much of it will be absorbed by the phone, some of it is going to reflect back, hit the beam splitter and eventually make it to the eye.

About 80% of the Real World Light Is Blocked

In several frames in the D23 interview video it was possible to see through the optics and make measurements as to the relative brightness looking through and around the optics. This measurement is only rough and and it helped to take it in several different images. The result was that about a 4.5 to 5X difference in brightness looking through the optics.

Looking back at the blue/center line in the optical diagram, about 50% of the light is blocked by the partial mirror combiner and then 50% of that light is block by the beam splitter for a net of 25%. With other practical losses including the shield, this comes close to the roughly 80% (4/5ths) of the light being block.

Is A Cell Phone Bright Enough?

For Movies in a dark room ANSI/SMPTE 196M spec for movies recommends about about 55 nits in a dark room. A cell phone typically has from 500 to 800 peak nits (see Displaymate’s Shootouts for objective measurements), but after about a 90% optical loss the image  would be down to between about 50 and 80 nits, which is possible just enough if the background/room is dark. could be acceptably bright in a moderately dark room.  But if the room light are on, this will be at best marginal even after allowing for the headset blocking about 75 to 80% of the room light between the combiner and the beam splitter.

With AR you are not just looking at a blank wall. To make something look “solid” non/transparent the display image needs to “dominate” by being at least 2X brighter than anything behind it. It becomes even more questionable that there is enough brightness unless there is not a lot of ambient light (or everything in the background is dark colored or the room lights are very dim).

Note, an LCOS or DLP based see-through AR systems can start with about 10 to 30 times or more the brightness (nits) of a cell phone. They do this so they can work in a variety of light conditions after all the other light losses in a system.

Alternative Optical Solution – Meta-2 “Type”

Using a large display like a cell phone rather than microdisplay severely limits the optical choices with a see-through display. Refractive (lens) optics, for example, would be huge and expensive or Fresnel optics with their optical issues.

Meta-2 “Bug-Eye” Combiners

The most obvious alternative to the birdbad would be to go with dual large combiners such as the Meta-2 approach (see left). When I first saw the Disney-Lenovo design, I even thought it might be using the Meta-2 approach (disproven on closer inspection). With Meta-2, the beam splitter is eliminated and two much larger semi-circular combiners (givening a “bug-eye” look) have a direct path to the display.  Still the bug-eyed combiner is not that much larger than the shield on the Disney-Lenovo system. Immediately, you should notice how the user’s eyes are visible which shows how much more light is getting through..

Because there is no beamsplitter, the Meta-2 design is much more optically efficient. Rough measurements from pictures suggest the Meta-2’s combiners pass 60% and thus reflects about 40%. This means with the same display, it would make the display appear 3 to 4 times brighter while allowing about 2.5X of the real world light through as that of the Disney-Lenovo birdbath design.

I have not tested a Meta-2 nor have read any serious technical evaluation (just the usual “ooh-wow” articles), and I have some concerns with the Meta design. The Meta-2 is “off-axis” in that the display is not perfectly perpendicular to the the combiner. One of the virtues of the birdbath is that is it results in a straightforward on-axis design. With the off-axis design, I wonder how well the focus distance is controlled across the FOV.

Also, the Meta-2 combiners are so far from the eye, that a persons two eyes would have optical cross-talk (there is nothing to keep the one eye from seeing what the other eye is seeing such as the baffels in the Disney-Lenovo design). I don’t know how this would affect things in stereo use, but I would be concerned.

In terms of simple image quality, I would think it would favor the single bug-eye style combiner. There are are no secondary reflections caused by the beamsplitter and both the display and the real world would be significantly brighter. In terms of cost, I see pro’s and con’s relative to each design and overall not a huge difference assuming both designs started with a cell phone displays. In terms of weight, I don’t see much of a difference either.

Conclusions

To begin with, I would not expect even good image quality out of a phone-as-a-display AR headset. Even totally purpose built AR display have their problems. Making a device “see-through” generally makes everything more difficult/expensive.

The optical design has to be compromised right from the start to support both LCD and OLED phones that could have different sizes. Making matters worse is the birdbath design with its huge light losses. Add to this the inherent reflections in the birdbath design and I don’t have high hopes for the image quality.

It seems to me a very heavy “lift” even for the Disney and Star Wars brands. We don’t have any details as to the image tracking and room tracking but I would expect like the optics, it will be done on the cheap. I have no inside knowledge, but it almost looks to me that the solution was designed around supporting the Jedi Light Saber shown in the teaser video (right). They need the see-through aspect so the user can see the light saber. But making the headset see-through is a long way to go to support the saber.

BTW, I’m a big Disney fan from way back (have been to the Disney parks around the world multiple times, attended D23 conventions, eaten at Club 33, was a member of the “Advisory Council” in 1999-2000, own over 100 books on Disney, and the one of the largest 1960’s era Disneyland Schuco monorail collections in the world ). I have an understanding and appreciation of Disney fandom, so this is not a knock on Disney in general.